Skip to main content

Advertisement

Log in

Design and production of dye-synthesized solar cells with FTO/TiO2/ferroelectric dye/electrolyte/Pt/FTO architecture

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A new approach for the application of dye-synthesized solar cells is realized by using perovskite and single oxide micro/nanopowders. With respect to the literature, the desired energy efficiency of dye-synthesized solar cells is a priori established as perovskite and single oxide micro/nanopowders in a composite structure. In the present work, in order to produce dye-synthesized solar cells with FTO/TiO2/ferroelectric/dye/electrolyte/Pt/FTO architecture, their precursor solutions were prepared by using nitrate-based salts, solvents, and chelating agents. The obtained gel films were dried at 200 °C for 2 h and then annealed at temperatures of 500 °C and 850 °C for 2 h in the air. TiO2 and LaFeO3 powders were characterized through DTA-TGA, FTIR, XRD, SEM, and UV-Vis spectrometer machines. In line with the results obtained, dye-sensitized solar cell production, which can also be called ferroelectric photovoltaic cells with a combination of TiO2, was produced. It was found that the production of continuously applicable and sustainable dye-sensitive solar cells using LaFeO3 with together TiO2 powders can be useful as innovative and futuristic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dhilipan, J., Vijayalakshmi, N., Shanmugam, D.B., Ganesh, R.J., Kodeeswaran, S., Muralidharan, S.: Materials Today: Proceedings Performance and efficiency of different types of solar cell material – A review. Mater. Today. Proc. 66, 1295–1302 (2022). https://doi.org/10.1016/j.matpr.2022.05.132

    Article  Google Scholar 

  2. Lee, T.D., Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017). https://doi.org/10.1016/j.rser.2016.12.028

    Article  CAS  Google Scholar 

  3. Kiran, K.S.S., Preethi, V., Kumar, S.: Materials Today : Proceedings A brief review of organic solar cells and materials involved in its fabrication. Mater. Today Proc. 56, 3826–3829 (2022). https://doi.org/10.1016/j.matpr.2022.02.205

    Article  CAS  Google Scholar 

  4. Devadiga, D., Selvakumar, M., Shetty, P., Sridhar, M.: The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems : A review. Renew. Sustain. Energy Rev. 159, 112252 (2022). https://doi.org/10.1016/j.rser.2022.112252

    Article  CAS  Google Scholar 

  5. Faheem, M.B., Khan, B., Hashmi, J.Z., Baniya, A., Subhani, W.S., Bobba, R.S., Yildiz, A., Qiao, Q.: Review Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Rep. Phys. Sci. 3, 100827 (2022). https://doi.org/10.1016/j.xcrp.2022.100827

    Article  CAS  Google Scholar 

  6. CharlesJr, H.K., A.P.: Ariotedjo: Parameters, review of amorphous and polycrystalline thin film silicon solar cell performance. Solar Energy. 24, 329–339 (1980)

    Article  Google Scholar 

  7. Mufti, N., Amrillah, T., Taufiq, A., Sunaryono, A., Diantoro, M., Zulhadjri, N., H.: Review of CIGS-based solar cells manufacturing by structural engineering. Solar Energy. 207, 1146–1157 (2020). https://doi.org/10.1016/j.solener.2020.07.065

    Article  CAS  Google Scholar 

  8. Ramanujam, J., Bishop, D.M., Todorov, T.K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., Romeo, A.: Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Prog. Mater. Sci. 110, 1–20 (2020). https://doi.org/10.1016/j.pmatsci.2019.100619

  9. Ananthakumar, S., Kumar, J.R., Babu, S.M.: Third-generation solar cells: Concept, materials and performance - An Overview. Springer (2019)

    Google Scholar 

  10. Bucherl, C.N., Oleson, K.R., Hillhouse, H.W.: Thin film solar cells from sintered nanocrystals. Curr. Opin. Chem. Eng. 2, 168–177 (2013). https://doi.org/10.1016/j.coche.2013.03.004

    Article  Google Scholar 

  11. Badgujar, A.C., Dusane, R.O., Dhage, S.R.: Pulsed laser annealing of spray casted Cu(In,Ga)Se2 nanocrystal thin films for solar cell application. Solar Energy. 199, 47–54 (2020). https://doi.org/10.1016/j.solener.2020.02.023

    Article  CAS  Google Scholar 

  12. Li, Q., Huang, X., Liu, S., Zhao, J., Zou, Y., Ding, Y., Cao, Z., Jiao, X., Cai, Y.P.: The alkyl chain positioning of thieno[3,4-c]pyrrole-4,6-dione (TPD)-Based polymer donors mediates the energy loss, charge transport and recombination in polymer solar cells. J. Power Sources. 480, 229098 (2020). https://doi.org/10.1016/j.jpowsour.2020.229098

    Article  CAS  Google Scholar 

  13. Keum, S., Song, S., Cho, H.W., Park, C.B., Park, S.S., Lee, W.K., Kim, J.Y., Jin, Y.: Non-fullerene polymer solar cells based on quinoxaline units with fluorine atoms. Synth. Met. 272, 116655 (2021). https://doi.org/10.1016/j.synthmet.2020.116655

    Article  CAS  Google Scholar 

  14. Ahmed, S., Jannat, F., Khan, M.A.K., Alim, M.A.: Numerical development of eco-friendly Cs2TiBr6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik (Stuttg). 225, 165765 (2021). https://doi.org/10.1016/j.ijleo.2020.165765

    Article  CAS  Google Scholar 

  15. Yu, Y., Zhang, F., Yu, H.: Self-healing perovskite solar cells. Solar Energy. 209, 408–414 (2020). https://doi.org/10.1016/j.solener.2020.09.018

    Article  CAS  Google Scholar 

  16. Taheri, S., Minbashi, M., Hajjiah, A.: A.: Effect of defects on high efficient perovskite solar cells. Opt Mater (Amst). 111, 110601 (2020). https://doi.org/10.1016/j.optmat.2020.110601

    Article  CAS  Google Scholar 

  17. Job, F., Mathew, S., Rajendran, R., Meyer, T., Narbey, S.: An investigation on the performance of dye-sensitized solar cell at various light intensities. Mater. Today Proc. 8, (2020). https://doi.org/10.1016/j.matpr.2020.08.372

  18. Peedikakkandy, L., Naduvath, J., Mallick, S., Bhargava, P.: Lead free, air stable perovskite derivative Cs2SnI6 as HTM in DSSCs employing TiO2 nanotubes as photoanode. Mater. Res. Bull. 108, 113–119 (2018). https://doi.org/10.1016/j.materresbull.2018.08.046

    Article  CAS  Google Scholar 

  19. Zatirostami, A.: Increasing the efficiency of TiO2-based DSSC by means of a double layer RF-sputtered thin film blocking layer. Optik (Stuttg). 207, 164419 (2020). https://doi.org/10.1016/j.ijleo.2020.164419

    Article  Google Scholar 

  20. Sharma, K., Sharma, V., Sharma, S.S.: Dye-sensitized solar cells: Fundamentals and current status. Nanoscale. Res. Lett. 13, (2018). https://doi.org/10.1186/s11671-018-2760-6

    Article  CAS  Google Scholar 

  21. Tributsch, H., Calvin, M.: Electrochemistry of excited molecules: Photo-electrochemical reactions of chlorophylls. Photochem. Photobiol. 14, 95–112 (1971)

    Article  CAS  Google Scholar 

  22. Tsubomura, H., Matsumura, M., Nomura, Y., Amamiya, T.: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell. Nature. 261, 402–403 (1976)

    Article  CAS  Google Scholar 

  23. O’Regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737–740 (1991)

    Article  Google Scholar 

  24. DSSC: Dye sensitized solar cells, https://www.gamry.com/application-notes/physechem/dssc-dye-sensitized-solar-cells/

  25. Wang, Y., Cheng, H., Yan, J., Chen, N., Yan, P., Ouyang, J.: Nonlinear electric field dependence of the transverse piezoelectric response in a (001) ferroelectric film. Scr. Mater. 189, 84–88 (2020). https://doi.org/10.1016/j.scriptamat.2020.08.006

    Article  CAS  Google Scholar 

  26. Lebedev, A.I.: Piezoelectric properties of ferroelectric perovskite superlattices with polar discontinuity. Comput. Mater. Sci. 188, 110113 (2020). https://doi.org/10.1016/j.commatsci.2020.110113

    Article  CAS  Google Scholar 

  27. Xi, G., Ding, J., Guo, R., Tian, J., Zhang, L.: Enhanced switchable ferroelectric photovoltaic in BiFeO3 based films through chemical-strain-tuned polarization. Ceram. Int. 48, 15414–15421 (2022). https://doi.org/10.1016/j.ceramint.2022.02.075

    Article  CAS  Google Scholar 

  28. Pan, W., Tang, Y., Yin, Y., Song, A., Yu, J., Ye, S.: Ferroelectric and photovoltaic properties of (Ba, Ca)(Ti, Sn, Zr)O3 perovskite ceramics. Ceram. Int. 47, 23453–23462 (2021). https://doi.org/10.1016/j.ceramint.2021.05.061

    Article  CAS  Google Scholar 

  29. Chen, G., Zou, K., Yu, Y., Zhang, Y., Zhang, Q., Lu, Y., He, Y.: Effects of the film thickness and poling electric field on photovoltaic performances of (Pb , La )( Zr , Ti )O3 ferroelectric thin film-based devices. Ceram. Int. 46, 4148–4153 (2020). https://doi.org/10.1016/j.ceramint.2019.10.131

  30. Çoban Özkan, D., Türk, A., Çelik, E.: Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. J. Mat. Sci.: Mater. Electr. 31, 22789–22809 (2020). https://doi.org/10.1007/s10854-020-04803-8

    Article  CAS  Google Scholar 

  31. Çoban Özkan, D., Türk, A., Celik, E.: Synthesis and characterizations of LaMnO3 perovskite powders using sol–gel method. J. Mat. Sci.: Mater. Electr. 32, 15544–15562 (2021). https://doi.org/10.1007/s10854-021-06104-0

    Article  CAS  Google Scholar 

  32. Çoban Özkan, D., Türk, A., Çelik, E.: Synthesis and characterization of sol–gel derived LaFe0.5Mn0.5O3 perovskite powders for dye-sensitized solar cell. J Mater Sci: Mater Electron. 33(17), 13698–13719 (2022). https://doi.org/10.1007/s10854-022-08304-8

    Article  CAS  Google Scholar 

  33. Sadar, M.: Turbidity Science. In: Technical Information Series (Booklet no. 11). Hach Company, USA (1998)

  34. Pelosato, R., Cristiani, C., Dotelli, G., Mariani, M., Donazzi, A., Natali Sora, I.: Co-precipitation synthesis of SOFC electrode materials. Int. J. Hydrogen Energy. 38, 480–491 (2013). https://doi.org/10.1016/j.ijhydene.2012.09.063

    Article  CAS  Google Scholar 

  35. Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 4, 145–153 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1

    Article  CAS  Google Scholar 

  36. Felix, J.F., Ferreira, S.O., de Souza, D., Gobato, Y.G., Chauhan, J., Alexeeva, N., Henini, M., Albadri, A.M., Alyamani, A.Y.: Investigation of the structural, optical and electrical properties of indium-doped TiO2 thin films grown by Pulsed Laser Deposition technique on low and high index GaAs planes. Mater. Sci. Eng. B Solid. State. Mater. Adv. Technol. 259, 114578 (2020). https://doi.org/10.1016/j.mseb.2020.114578

    Article  CAS  Google Scholar 

  37. Kandiel, T.A., Robben, L., Alkaim, A., Bahnemann, D.: Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem Photobiol Sci. 12, 602–609 (2013). https://doi.org/10.1039/c2pp25217a

  38. Wang, J., Cao, X., Liu, S., Guo, Y., Wang, Z., Li, X., Ren, Y., Xia, Z., Wang, H., Liu, C., Wang, N., Jiang, W., Ding, W.: Preparation , structural and sintering properties of AZO nanoparticles by sol- gel combustion method. Ceram. Int. 46(11), 17659 (2020). https://doi.org/10.1016/j.ceramint.2020.04.068

    Article  CAS  Google Scholar 

  39. Sr, L., Fe, M.: Sol – gel synthesis , characterization and microwave absorbing properties. Mater. Res. Bull. 47, 1961–1967 (2012). https://doi.org/10.1016/j.materresbull.2012.04.017

  40. Liu, Z., Jian, Z., Fang, J., Xu, X., Zhu, X., Wu, S.: Low-temperature reverse microemulsion synthesis, characterization, and photocatalytic performance of nanocrystalline titanium dioxide. Int. J. Photoenergy. 2012, 702503 (2012). https://doi.org/10.1155/2012/702503

    Article  CAS  Google Scholar 

  41. Vojisavljević, K., Chevreux, P., Jouin, J., Malič, B.: Characterization of the alkoxide-based sol-gel derived La9.33Si6O26 powder and ceramic. Acta Chim. Slov. 61, 530–541 (2014)

    Google Scholar 

  42. Yurddaskal, M., Celik, E.: Effect of halogen-free nanoparticles on the mechanical, structural, thermal and flame retardant properties of polymer matrix composite. Compos. Struct. 183, 381–388 (2017). https://doi.org/10.1016/j.compstruct.2017.03.093

    Article  Google Scholar 

  43. Gosavi, P.V., Biniwale, R.B.: Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem. Phys. 119(1-2), 324 (2010). https://doi.org/10.1016/j.matchemphys.2009.09.005

    Article  CAS  Google Scholar 

  44. Chen, X., Yu, J., Guo, S., Lu, S., Luo, Z., He, M.: Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J. Mater. Sci. 44, 1324–1332 (2009). https://doi.org/10.1007/s10853-009-3273-6

    Article  CAS  Google Scholar 

  45. SPAHIU, E.: ATR-FTIR evaluation of structural and functional changes on murine macrophage cells upon activation and suppression by immuno-therapeutic oligodeoxynucleotides, http://etd.lib.metu.edu.tr/upload/12618753/index.pdf, (2015)

  46. Lin, L., Song, Z., Haider, Z., Liu, X., Qiu, W.: Enhanced As ( III ) removal from aqueous solution by Fe-Mn-La- impregnated biochar composites. Sci. Total Environ. 686, 1185–1193 (2019). https://doi.org/10.1016/j.scitotenv.2019.05.480

    Article  CAS  Google Scholar 

  47. Sukumar, M., Kennedy, L.J., Vijaya, J.J., Al-Najar, B., Bououdina, M.: Facile synthesis of Fe3+ doped La2CuO4/LaFeO3 perovskite nanocomposites: Structural, optical, magnetic and catalytic properties. Mater. Sci. Semicond Process. 100, 225–235 (2019). https://doi.org/10.1016/j.mssp.2019.04.049

    Article  CAS  Google Scholar 

  48. Liu, J., Yang, W.: Synthesis and electron irradiation modification of anatase TiO2 with different morphologies. Ceram. Int. 48, 10428–10437 (2022). https://doi.org/10.1016/j.ceramint.2021.12.251

    Article  CAS  Google Scholar 

  49. Hu, J., Chen, X., Zhang, Y.: Sensors and Actuators : B . Chemical Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit. Sens. Actuators B Chem. 349, 130738 (2021). https://doi.org/10.1016/j.snb.2021.130738

    Article  CAS  Google Scholar 

  50. Zhang, Y., Zak, Z., Sun, P., Huang, Z., Zheng, S.: A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis. Powder Technol. 393, 650–658 (2021). https://doi.org/10.1016/j.powtec.2021.08.014

    Article  CAS  Google Scholar 

  51. Amini, F., Padervand, S., Yaghmaeian, K.: Journal of Environmental Chemical Engineering Synthesis of PAC-LaFeO3-Cu nanocomposites via sol-gel method for the photo catalytic degradation of humic acids under visible light irradiation. J. Environ. Chem. Eng. 9, 105557 (2021). https://doi.org/10.1016/j.jece.2021.105557

    Article  CAS  Google Scholar 

  52. Çoban Özkan, D.: Design, production and industrıal applicatıons of ferroelectric photovoltaic cells, (2021)

    Google Scholar 

  53. Zhang, K., Yin, L., Liu, G., Cheng, H.M.: Accurate structural descriptor enabled screening for nitrogen and oxygen vacancy codoped TiO2 with a large bandgap narrowing. J. Mater. Sci. Technol. 122, 84–90 (2022). https://doi.org/10.1016/j.jmst.2021.12.062

    Article  Google Scholar 

  54. Tian, Z., Yang, X., Chen, Y., Wang, X., Jiao, T., Zhao, W., Huang, H., Hu, J.: Construction of LaFeO3/g-C3N4 nanosheet-graphene heterojunction with built-in electric field for efficient visible-light photocatalytic hydrogen production. J. Alloys. Compd. 890, (2022). https://doi.org/10.1016/j.jallcom.2021.161850

  55. Park, D., Ju, H., Kim, J.: One-pot fabrication of Ag–SrTiO3 nanocomposite and its enhanced thermoelectric properties. Ceram. Int. 45(14), 16969 (2019). https://doi.org/10.1016/j.ceramint.2019.05.245

    Article  CAS  Google Scholar 

  56. Yu, J., Chen, Z., Zeng, L., Ma, Y., Feng, Z., Wu, Y., Lin, H., Zhao, L., He, Y.: Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Solar Energy Mater. Solar Cells. 179, 45 (2018). https://doi.org/10.1016/j.solmat.2018.01.043

    Article  CAS  Google Scholar 

  57. Tang, J., Wang, Y., Zhang, L., Song, B., Zhang, Y., Wang, Y., Liu, Z., Sui, Y.: Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap. J. Alloys. Compd. 703, 67 (2017). https://doi.org/10.1016/j.jallcom.2017.01.180

    Article  CAS  Google Scholar 

  58. Agarwal, H., Yadav, P., Lalla, N.P., Alonso, J.A., Srivastava, O.N., Shaz, M.A.: Structural correlation of magneto-electric coupling in polycrystalline TbMnO3 at low temperature. J. Alloys Compd. 806, 510 (2019). https://doi.org/10.1016/j.jallcom.2019.07.228

    Article  CAS  Google Scholar 

  59. Bhoi, K., Dam, T., Mohapatra, S.R., Patidar, M.M., Singh, D., Singh, A.K., Vishwakarma, P.N., Babu, P.D., Siruguri, V., Pradhan, D.K.: Studies of magnetic phase transitions in orthorhombic DyMnO3 ceramics prepared by acrylamide polymer gel template method. J. Magn. Magn. Mater. 480, 138–149 (2019). https://doi.org/10.11016/j.jmmm.2019.02.069

    Article  CAS  Google Scholar 

  60. Luo, H., Guo, J., Shen, T., Zhou, H., Liang, J., Yuan, S.: Study on the catalytic performance of LaMnO3 for the RhB degradation. J. Taiwan Inst. Chem. Eng. 109, 15–25 (2020). https://doi.org/10.1016/j.jtice.2020.01.011

    Article  CAS  Google Scholar 

  61. Ha, T., Huong, T., Nam, H., Hai, N., Viet, C.: Results in Physics Sr doped LaMnO3 nanoparticles prepared by microwave combustion method : A recyclable visible light photocatalyst. Results Phys. 19, 103417 (2020). https://doi.org/10.1016/j.rinp.2020.103417

    Article  Google Scholar 

  62. Das, N., Bhattacharya, D., Sen, A., Maiti, H.S.: Sonochemical synthesis of LaMnO3 nano-powder. Ceram. Int. 35, 21–24 (2009). https://doi.org/10.1016/j.ceramint.2007.09.002

    Article  CAS  Google Scholar 

  63. Priyatharshni, S., Kumar, S.R., Viswanathan, C., Ponpandian, N.: Morphologically tuned LaMnO3 as an e ffi cient nanocatalyst for the removal of organic dye from aqueous solution under sunlight. J. Environ. Chem. Eng. 8, 104146 (2020). https://doi.org/10.1016/j.jece.2020.104146

    Article  CAS  Google Scholar 

Download references

Funding

This research has been supported by Manisa Celal Bayar University, Scientific Research Projects Coordination Unit, Project Number: 2018-049 and Dokuz Eylul University, Center of Fabrication and Application of Electronic Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Coban Ozkan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coban Ozkan, D., Turk, A. & Celik, E. Design and production of dye-synthesized solar cells with FTO/TiO2/ferroelectric dye/electrolyte/Pt/FTO architecture. J Aust Ceram Soc 59, 727–738 (2023). https://doi.org/10.1007/s41779-023-00869-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00869-9

Keywords

Navigation