Skip to main content
Log in

Assessment of structural, morphological, and optical properties of MnFe2O4 nanoparticles and MnFe2O4-layered 2D structures elaborated by e-beam technique

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this research, manganese ferrite (MnFe2O4) thin film and spherical nanoparticles were synthesized using the e-beam evaporation type of PVD and sol-gel method, respectively. Also, the effect of morphology on the structural, linear, and nonlinear optical properties of samples was investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to assess the surface morphology of the specimens. The nonlinear optical (NLO) properties were also explored by the Z-scan technique utilizing CW laser at 532 nm. Different incident powers of laser were evaluated during nonlinearity assessments. In this research, MnFe2O4 nanoparticles showed higher nonlinear responses than MnFe2O4 thin film. The nonlinear refractive (NLR) indices and nonlinear absorption (NLA) coefficient of MnFe2O4 nanoparticles were 10−4 cm2/W and 10 W/cm, respectively. The obtained optical nonlinearity can be assigned to the two-photon absorption and the self-focusing effect. In addition, thermal nonlinearity explains the changes in the value of β and n2 for MnFe2O4 nanoparticles and thin films. The higher nonlinearity in the nanoparticle sample than thin film can be due to nanoparticle clusters in solution of MnFe2O4. The good nonlinear optical properties of MnFe2O4 indicate that this material can be the promising potential in nonlinear photonic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ellis, B., Mayer, M.A., Shambat, G., Sarmiento, T., Harris, J., Haller, E.E., Vučković, J.: Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser. Nat. Photonics. (2011). https://doi.org/10.1038/nphoton.2011.51

  2. Bhowmik, M., Kanmani, M., Debnath, A., Saha, B.: Sono-assisted rapid adsorption of anionic dye onto magnetic CaFe2O4/MnFe2O4nanocomposite from aqua matrix. Power Tech. (2019). https://doi.org/10.1016/j.powtec.2019.06.009

  3. Vinosha, P.A., Manikandan, A., Ceicilia, A.S.J., Dinesh, A., Nirmala, G.F., Preetha, A.C., Slimani, Y., Almessiere, M.A., Baykal, A., Xavier, B.: Review on recent advances of zinc substituted cobalt ferrite nanoparticles: synthesis characterization and diverse applications. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.12.289

  4. Li, Y., Xu, J., Chao, J., Chen, D., Ouyang, S., Ye, J., Shen, G.: High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J. Mater. Chem. (2011). https://doi.org/10.1039/C1JM11356A

  5. Komarneni, S., Fregeau, E., Breval, E., Roy, R.: Hydrothermal preparation of ultrafine ferrites and their sintering. J. Am. Ceram. Soc. (1987). https://doi.org/10.1111/J.1151-2916.1988.TB05773.X

  6. Uskokoviü, V., Drofenik, M.: A mechanism for the formation of nanostructured NiZn ferrites via a microemulsion-assisted precipitation method. Colloids Surf. A Physicochem. Eng. Asp. (2005). https://doi.org/10.1016/j.colsurfa.2005.06.022

  7. Bujoreanu, V.M., Diamandescu, L., Brezean, M.: On the structure of manganese ferrite powder prepared by coprecipitation from MnO2 and FeSO4·7H2O. Mater. Lett. (2000). https://doi.org/10.1016/S0167-577X(00)00162-2

  8. Subramani, A.K., Kondo, K., Tada, M., Abe, M., Yoshimura, M., Matsushita, N.: Spinel ferrite films by a novel solution process for high frequency applications. Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2010.02.031

  9. Wang, X.H., Li, X.J., Yan, H.H., Xue, L., Qu, Y.D., Sun, G.L.: Nano-MnFe2O4 powder synthesis by detonation of emulsion explosive. Appl. Phys. A. (2008). https://doi.org/10.1007/s00339-007-4308-y

  10. Ahmed, Y.M.Z.: Synthesis of manganese ferrite from non-standard raw materials using ceramic technique. Ceram. Int. (2010). https://doi.org/10.1016/j.ceramint.2009.11.020

  11. Kadu, A.V., Jagtap, S.V., Chaudhari, G.N.: Studies on the preparation and ethanol gas sensing properties of spinel Zn0.6Mn0.4Fe2O4 nanomaterials. Curr. Appl. Phys. (2009). https://doi.org/10.1016/j.cap.2009.02.001

  12. Gabal, M.A., Abdel-Daiem, A.M., Al Angari, Y.M., Ismail, I.M.: Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. Polyhedron. (2013). https://doi.org/10.1016/j.poly.2013.04.027

  13. Thakur, A., Singh, M.: Preparation and characterization of nanosize Mn0.4Zn0.6 Fe2O4 ferrite by citrate precursor method. Ceram. Int. (2003). https://doi.org/10.1016/S0272-8842(02)00194-3

  14. Shanmugavel, T., Raj, S.G., Kumar, G.R., Rajarajan, G.: Synthesis and structural analysis of nanocrystalline MnFe2O4. Phys. Procedia. (2014). https://doi.org/10.1016/j.phpro.2014.10.053

  15. Šafařík, I., Šafaříková, M.: Magnetic nanoparticles and biosciences. In: Hofmann, H., Rahman, Z., Schubert, U. (eds.) Nanostructured Materials. Springer, Vienna (2002)

    Google Scholar 

  16. Yang, L.X., Jin, R.C., Liang, Y., Wang, F., Yin, P., Yi, C.Y.: Preparation and magnetic properties of MnFe2O4–Fe2O3@SnO2 heterostructures. Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.04.012

  17. Gunjakar, J.L., More, A.M., Gurav, K.V., Lokhande, C.D.: Chemical synthesis of spinel nickel ferrite (MnFe2O4) nano-sheets. Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.03.065

  18. Bairy, R., Jayarama, A., Murari, M.S.: Structural, linear and nonlinear optical properties of Cd1-xAlxS semiconductor nanostructures: influence of film thickness. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.03.063

  19. Syazwan, M., Azis, R., Hashim, M., Ismayadi, I., Kanagesan, S., Hapishah, A.N.: Co–Ti- and Mn–Ti-substituted barium ferrite for electromagnetic property tuning and enhanced microwave absorption synthesized via mechanical alloying. J. Aust. Ceram. Soc. (2017). https://doi.org/10.1007/s41779-017-0056-4

  20. Nakashima, S., Sugioka, K., Tanaka, K., Midorikawa, K.: Optical and magneto-optical properties in Fe-doped glasses irradiated with femtosecond laser. Appl. Phys. B. (2013). https://doi.org/10.1007/s00340-013-5489-z

  21. Cerqua-Richardson, K.A., McKinley, J.M., Lawrence, B., Joshi, S., Villeneuve, A.: Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form. Opt. Mater. (1998). https://doi.org/10.1016/S0925-3467(97)00142-0

  22. Jacintha, A.M., Manikandan, A., Chinnaraj, K., Antony, S.A., Neeraja, P.: Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J. Nanosci. Nanotechnol. (2015). https://doi.org/10.1166/jnn.2015.10343

  23. Li, H., Wu, H.Z., Xiao, G.X.: Effects of synthetic conditions on particle size and magnetic properties of MnFe2O4. Powder Technol. (2010). https://doi.org/10.1016/j.powtec.2009.11.005

  24. Huong, P.T.L., Huy, L.T., Phan, V.N., Huy, T.Q., Nam, M.H., Lam, V.D., Le, A.T.: Application of graphene oxide-MnFe2O4 magnetic nanohybrids as magnetically separable adsorbent for highly efficient removal of arsenic from water. J. Electron. Mater. (2016). https://doi.org/10.1007/s11664-015-4314-3

  25. Zhang, D.E., Zhang, X.J., Ni, X.M., Zheng, H.G., Yang, D.D.: Synthesis and characterization of MnFe2O4 magnetic nanorods via a PEG-assisted. J. Magn. Magn. Mater. (2005). https://doi.org/10.1016/j.jmmm.2004.10.097

  26. Gilani, Z.A., Warsi, M.F., Anjum, M.N., Shakir, I., Naseem, S., Riza, S., Khan, M.A.: Structural and electromagnetic behavior evaluation of Nd-doped lithium-cobalt nanocrystals for recording media applications. J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.170

  27. Kale, A., Gubbala, S., Misra, R.D.K.: Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse micelle technique. J. Magn. Magn. Mater. (2004). https://doi.org/10.1016/j.jmmm.2003.11.015

  28. Wang, H., Yao, Q., Wang, C., Ma, Z., Sun, Q., Fan, B., Jin, C., Chen, Y.: Hydrothermal synthesis of nanooctahedra MnFe2O4 onto the wood surface with soft magnetism, fire resistance and electromagnetic wave absorption. Nanomaterials. (2017). https://doi.org/10.3390/nano7060118

  29. Niasari, M.S., Davar, F., Mahmoudi, T.: Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. (2009). https://doi.org/10.1016/j.poly.2008.08.020

  30. Maensiri, S., Nuansing, W., Klinkaewnarong, J., Laokul, P., Khemprasit, J.: Nanofibers of barium strontium titanate (BST) by sol–gel processing and electrospinning. J. Colloid Interface Sci. (2006). https://doi.org/10.1016/j.jcis.2005.11.005

  31. Baig, M.M., Zulfiqar, S., Yousuf, M.A., Touqeer, M., Ullah, S., Agboola, P.O., Warsi, M.F., Shakir, I.: Structural and photocatalytic properties of new rare earth La3+ substituted MnFe2O4 ferrite nanoparticles. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.103

  32. Sun, Y., Wang, X., Du, F., Niu, J., Nan, Y., Pu, J., Huang, Y., Hou, B.: Fabrication of Z-scheme MnFe2O4@SiO2/TiO2 composite used for 304 stainless steel photocathodic protection. J. Electroanal. Chem. (2022). https://doi.org/10.1016/j.jelechem.2022.116813

  33. Nagarajan, V., Thayumanavan, A.: Spray deposited MnFe2O4 thin films for detection of ethanol and acetone vapors. Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.09.156

  34. Sahoo, S., Sahoo, P.K., Sharma, A., Satpati, A.K.: Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens. Actuators B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.127763

  35. Meena, S., Anantharaju, K.S., Malini, S., Dey, A., Renuka, L., Prashantha, S.C., Vidya, Y.S.: Impact of temperature-induced oxygen vacancies in polyhedron MnFe2O4 nanoparticles: as excellent electrochemical sensor, supercapacitor and active photocatalyst. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2020.12.217

  36. Shi, Z., Zhang, J., Gao, D., Zhu, Z., Yang, Z., Zhang, Z., Xue, D.: Magnetic resonance of the MnFe2O4 nanoparticles in the gigahertz range. Nanoscale Res. Lett. (2013). https://doi.org/10.1186/1556-276X-8-404

  37. Tamgadge, Y.S., Pahurkar, V.G., Talwatkar, S.S., Sunatkari, A.L.: Thermally stimulated third-order optical nonlinearity in Cd-doped CuO–PVA thin films under cw laser illumination. Appl. Phys. B. (2015). https://doi.org/10.1007/s00340-015-6147-4

  38. Nadafan, M., Ghorbani-Moghadam, T., Mousavi, M.: Investigation of the linear and nonlinear optical properties of La2−xSrxCoO4 (x= 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5) nanoparticles. J. Mater. Chem. C. (2021). https://doi.org/10.1039/D1TC01982A

  39. Parishani, M., Nadafan, M., Malekfar, R.: Z-scan investigation to evaluate the third-order nonlinear optical properties of cauliflower-like VS2 structures. JOSA B. (2021). https://doi.org/10.1364/JOSAB.418182

  40. Ravindra, H.J., Kiran, A.J., Chandrasekharan, K., Shashikala, H.D., Dharmaprakash, S.M.: Third order nonlinear optical properties and optical limiting in donor/acceptor substituted 4′-methoxy chalcone derivatives. Appl. Phys. B. (2007). https://doi.org/10.1007/s00340-007-2677-8

  41. Sinha, S., Sasikumar, S., Ray, A.K., Dasgupta, K.: Z-scan measurement of optical nonlinearity in solid-state dye doped media. Appl. Phys. B. (2007). https://doi.org/10.1007/s00340-006-2530-5

  42. Shaik, U.P., Kumar, P.A., Krishna, M.G., Venugopal Rao, S.: Morphological manipulation of the nonlinear optical response of ZnO thin films grown by thermal evaporation. Mater. Res. Express. (2014). https://doi.org/10.1088/2053-1591/1/4/046201

  43. Chen, S., Webster, S., Czerw, R., Xu, J., Carrollb, D.L.: Morphology effects on the optical properties of silver nanoparticles. J. Nanosci. Nanotechnol. (2004). https://doi.org/10.1166/jnn.2004.034

  44. Neo, M.S., Venkatram, N., Li, G.S., Chin, W.S., Wei, J.: Size-dependent optical nonlinearities and scattering properties of PbS nanoparticles. J. Phys. Chem. C. (2009). https://doi.org/10.1021/jp9066263

  45. Yang, X., Li, Q., Meng, X., Li, D.: Evolution of nonlinear optical characteristics of magnetic nanoparticle colloidal suspensions after laser-induced clusters. ACS Omega. (2020). https://doi.org/10.1021/acsomega.0c00609

  46. Abdullah, M., Bakhtiar, H., Krishnan, G., Aziz, M.S.A., Danial, W.H., Islam, S.: Transition from saturable absorption to reverse saturable absorption of carmoisine dye under low-powered continuous wave laser excitation. Opt. Laser Technol. (2019). https://doi.org/10.1016/j.optlastec.2019.01.032

  47. Yuvaraj, S., Manikandan, N., Vinitha, G.: Structural and nonlinear optical properties of nickel substituted manganese ferrite nanoparticles. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.09.033

  48. Yuvaraj, S., Manikandan, N., Vinitha, G.: Influence of copper ions on structural and non-linear optical properties in manganese ferrite nanomaterials. Opt. Mater. (2017). https://doi.org/10.1016/j.optmat.2017.08.027

  49. Saravanan, M., Sabari Girisun, T.C., Vinitha, G.: Third-order nonlinear optical properties and power limiting behavior of magnesium ferrite under CW laser (532 nm, 50 mW) excitation. J. Mater. Sci. (2016). https://doi.org/10.1007/s10853-015-9642-4

  50. Thomas, J.J., Krishnan, S., Sridharan, K., Philip, R., Kalarikkal, N.: A comparative study on the optical limiting properties of different nano spinel ferrites with Z-scan technique. Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.04.067

  51. Stoneham, A.M., Gavartin, J., Shluger, A.L., Kimmel, A.V., Ramo, D.M., Rønnow, H.M., Aeppli, G., Renner, C.: Trapping, self-trapping and the polaron family. J. Phys. Condens. Matter. (2007). https://doi.org/10.1088/0953-8984/19/25/255208

  52. Shen, H., Cheng, B., Lu, G., Ning, T., Guan, D., Zhou, Y., Chen, Z.: Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology. (2006). https://doi.org/10.1088/0957-4484/17/16/045

  53. Chtouki, T., Soumahoro, L., Kulyk, B., Bougharraf, H., Kabouchi, B., Erguig, H., Sahraoui, B.: Spin-coated Tin-doped NiO thin films for third order nonlinear optical applications. Optik. (2017). https://doi.org/10.1016/j.ijleo.2017.01.110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nadafan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadafan, M., Puladrak, M., Majidi, R. et al. Assessment of structural, morphological, and optical properties of MnFe2O4 nanoparticles and MnFe2O4-layered 2D structures elaborated by e-beam technique. J Aust Ceram Soc 59, 491–500 (2023). https://doi.org/10.1007/s41779-023-00858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00858-y

Keywords

Navigation