Skip to main content
Log in

Role of Ir incorporation on structural, surface, optical, and electrical properties of ultrasonically produced ZnO films

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Pure and doped ZnO films are among the promising materials in technological applications, which is constantly developing and seeking innovations. In this study, the effect of Ir element on the structural, optical, electrical, and surface properties of ZnO films produced by ultrasonic spray pyrolysis at different Ir incorporation rates (4% and 8%) was investigated. XRD patterns show that the 4% Ir-doped ZnO film have the best crystallization level. The thickness and band gap values of pure, 4%, and 8% Ir-doped ZnO films were determined as 269 nm, 278 nm, 267 nm, and 3.20 eV, respectively, by using spectroscopic ellipsometry and optical method. Surface properties were analyzed by field emission scanning electron microscopy, and elemental analyses were performed by energy dispersive X-ray spectroscopy. Electrical resistivity values of ZnO:Ir films calculated by the two-point technique were determined to vary between 8.26 × 100 and 6.29 × 102 Ωcm. Besides, the activation and trap energy values of the films from temperature-dependent resistivity measurements were calculated as 1.358–3.977 meV and 18.019–28.307 meV, respectively. It was concluded from all analyses that Ir element has a strong effect on the structural, surface, and electrical properties of ZnO films and Ir-incorporated ZnO films having suitable structural and surface properties can be used as photocatalysts in photocatalytic applications. Moreover, we suggest that p-type ZnO films can be produced using different Ir incorporation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bazta, O., Urbieta, A., Piqueras, J., Fernández, P., Addou, M., Calvino, J.J., Hungría, A.B.: Influence of yttrium doping on the structural, morphological and optical properties of nanostructured ZnO thin films grown by spray pyrolysis. Ceram Int. 45(6), 6842–6852 (2019). https://doi.org/10.1016/j.ceramint.2018.12.178

    Article  CAS  Google Scholar 

  2. Umar, S., Kumar, M.: Effect of Fe doping on optical and structural properties of ZnO thin film prepared by spray pyrolysis method. Materials Today: Proceedings. 5(3), 9173–9176 (2018). https://doi.org/10.1016/j.matpr.2017.10.039

    Article  CAS  Google Scholar 

  3. Juwhari, H.K., Zihlif, A., Elimat, Z.M., Ragosta, G.: Study on the DC-electrical and thermal conductivities of epoxy/ZnO composites doped with carbon black. Radiat. Eff. Defects Solids. 169(6), 560–572 (2014). https://doi.org/10.1080/10420150.2014.905944

    Article  CAS  Google Scholar 

  4. Wei, S., Lian, J., Wu, H.: Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Mater. Charact. 61(11), 1239–1244 (2010). https://doi.org/10.1016/J.MATCHAR.2010.08.002

    Article  CAS  Google Scholar 

  5. Mousavi, S.H., Haratizadeh, H., Minaee, H.: The effect of morphology and doping on photoluminescence of ZnO nanostructures. Opt. Commun. 284(14), 3558–3561 (2011). https://doi.org/10.1016/j.optcom.2011.03.078

    Article  CAS  Google Scholar 

  6. Xu, L., Gu, F., Su, J., Chen, Y., Li, X., Wang, X.: The evolution behavior of structures and photoluminescence of K-doped ZnO thin films under different annealing temperatures. J. Alloy Compd. 509(6), 2942–2947 (2011). https://doi.org/10.1016/j.jallcom.2010.11.164

    Article  CAS  Google Scholar 

  7. Mclaren, A., Valdes-Solis, T., Li, G., Tsang, S.C.: Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131(35), 12540–12541 (2009). https://doi.org/10.1021/ja9052703

    Article  CAS  Google Scholar 

  8. Abrarov, S.M., Yuldashev, S., Kim, U.T.W., Lee, S.B., Kwon, Y.H., Kang, T.W.: Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal. Opt. Commun. 250(1-3), 111–119 (2005). https://doi.org/10.1016/j.optcom.2005.02.016

    Article  CAS  Google Scholar 

  9. Sberveglieri, G., Groppelli, S., Nelli, P., Tintinelli, A., Giunta, G.: A novel method for the preparation of NH3 sensors based on ZnO-In thin films. Sens. Actuat. B. 25(1-3), 588–590 (1995). https://doi.org/10.1016/0925-4005(95)85128-3

    Article  CAS  Google Scholar 

  10. Xiangfeng, C., Dongli, J., Djurisic, A.B., Leung, Y.H.: Gas-sensing properties of thick film based on ZnO nano-tetrapods. Chem. Phys. Lett. 401(4-6, 426), –429 (2005). https://doi.org/10.1016/j.cplett.2004.11.091

  11. Rodriguez, J.A., Jirsak, T., Dvorak, J., Sambasivan, S., Fischer, D.: Reaction of NO with Zn and ZnO: photoemission, XANES, and density functional studies on the formation of NO. J. Phys. Chem. B. 104(2), 319–328 (2000). https://doi.org/10.1021/jp993224g

    Article  CAS  Google Scholar 

  12. Pradhan, B., Batabyal, S.K., Pal, A.J.: Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 91(9), 769–773 (2007). https://doi.org/10.1016/j.solmat.2007.01.006

    Article  CAS  Google Scholar 

  13. Ohta, H., Kawamura, K., Orita, M., Hirano, M.: Current injection emission from a transparent p–n junction composed of p-SrCu2O2/n-ZnO. Appl. Phys. Lett. 77, 475 (2000). https://doi.org/10.1063/1.127015

    Article  CAS  Google Scholar 

  14. Badran, R.I., Umar, A., Al-Heniti, S., Al-Hajry, A., Al-Harbi, T.: Synthesis and characterization of zinc oxide nanorods on silicon for the fabrication of p-Si/n-ZnO heterojunction diode. J. Alloys Compd. 508(2), 375–379 (2010). https://doi.org/10.1016/j.jallcom.2010.08.048

    Article  CAS  Google Scholar 

  15. Yokogawa, T., Kamiyama, S., Yoshii, S., Ohkawa, K., Tsujimura, A., Sasai, Y.: Real-index guided blue-green laser diode with small beam astigmatism fabricated using ZnO buried structure. Jpn. J. Appl. Phys. 35, L314–L316 (1996)

    Article  CAS  Google Scholar 

  16. Chi, P.W., Su, C.W., Wei, D.H.: Control of hydrophobic surface and wetting states in ultra-flat ZnO films by GLAD method. Applied Surface Science. 404, 380–387 (2017). https://doi.org/10.1016/j.apsusc.2017.01.266

    Article  CAS  Google Scholar 

  17. Xu, L., Shi, L., Li, X.: Preparation of nanocone ZnO thin film and its aging effect of photoluminescence. Appl. Surf. Sci. 255(11), 5957–5960 (2009). https://doi.org/10.1016/j.apsusc.2009.01.044

    Article  CAS  Google Scholar 

  18. Djurisic, A.B., Ng, A.M.C., Chen, X.Y.: ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quant Electron. 34(4), 191–259 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  CAS  Google Scholar 

  19. Hirai, T., Asada, Y.: Preparation of ZnO nanoparticles in a reverse micellar system and their photoluminescence properties. J. Colloid Interf. Sci. 284(1), 184–189 (2005). https://doi.org/10.1016/j.jcis.2004.09.069

    Article  CAS  Google Scholar 

  20. Iwan, A., Tazbir, I., Sibinski, M., Boharewicz, B., Pasciak, G., Schab-Balcerzak, E.: Optical, electrical and mechanical properties of indium tin oxide on polyethylene terephthalate substrates: application in bulk-heterojunction polymer solar cells. Mater. Sci. Semicond. Process. 24, 110–116 (2014). https://doi.org/10.1016/j.mssp.2014.03.018

    Article  CAS  Google Scholar 

  21. Castaneda, L., Maldonado, A., Escobedo-Morales, A., Avendano-Alejo, M., Gomez, H., Vega-Perez, J., Olvera, M.D.L.L.: Indium doped zinc oxide thin films deposited by ultrasonic spray pyrolysis technique: effect of the substrate temperature on the physical properties. Mat. Sci. Semicon. Proc. 14(2), 114–119 (2011). https://doi.org/10.1016/j.mssp.2011.01.013

    Article  CAS  Google Scholar 

  22. Wu, Q.H.: ZnO nanostructures prepared using a vapour transport method. J Exp Nanosci. 10(3), 161–166 (2015). https://doi.org/10.1080/17458080.2013.809559

    Article  CAS  Google Scholar 

  23. Bruncko, J., Šutta, P., Netrvalová, M., Michalka, M., Vinczea, A.: Pulsed laser deposition of Ga doped ZnO films-influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties. Vacuum. 159, 134–140 (2019) ISSN 0042-207X.

    Article  CAS  Google Scholar 

  24. Lei, M., He, H., Yu, Q., Chen, C., Lu, Y., Ye, Z.: Optical properties of Na-doped ZnO nanorods grown by metalorganic chemical vapor deposition. Mater. Lett. 160, 547–549 (2015). https://doi.org/10.1016/j.matlet.2015.08.047

    Article  CAS  Google Scholar 

  25. Vallejos, S., Selina, S., Annanouch, F.E., Gracia, I., Llobet, E., Blackman, C.: Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 6(28464), 1–12 (2016). https://doi.org/10.1038/srep28464

    Article  Google Scholar 

  26. Dai, S., Li, Y., Du, Z., Carter, K.R.: The electrochemical society, find out more electrochemical deposition of ZnO hierarchical nanostructures from hydrogel coated electrodes. J Electrochem Soc. 160(4), D156 (2013). https://doi.org/10.1149/2.064304jes

    Article  Google Scholar 

  27. Yao, B.D., Chan, Y.E., Wang, N.: Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757 (2002). https://doi.org/10.1063/1.1495878

    Article  CAS  Google Scholar 

  28. Yang, J., Wang, D., Yang, L., Zhang, Y., Xing, G., Lang, J., Fan, H., Gao, M., Wang, Y.: Effects of supply time of Ar gas current on structural properties of Au-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process. J. Alloys Compd. 450, 508–511 (2008). https://doi.org/10.1016/j.jallcom.2006.11.160

    Article  CAS  Google Scholar 

  29. Pavan, M., Rühle, S., Ginsburg, A., Keller, D.A., Barad, H.-N., Sberna, P.M., Nunes, D., Martins, R., Anderson, A.Y., Zaban, A., Fortunato, E.: TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells. 132, 549–556 (2015). https://doi.org/10.1016/j.solmat.2014.10.005

    Article  CAS  Google Scholar 

  30. Studenikin, S.A., Golero, N., Cocivera, M.: Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. J. Appl. Phys. 83(4), 2104–2111 (1998). https://doi.org/10.1063/1.366944

    Article  CAS  Google Scholar 

  31. Liu, Y., Zhang, H., An, X., Gao, C., Zhang, Z., Zhou, J., Zhou, M., Xie, E.: Effect of Al doping on the visible photoluminescence of ZnO nanofibers. J. Alloy. Compd. 506(2), 772–776 (2010). https://doi.org/10.1016/j.jallcom.2010.07.067

    Article  CAS  Google Scholar 

  32. Sasa, S., Ozaki, M., Koike, K., Yano, M., Inoue, M.: High-performance ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor structure. Appl. Phys. Lett. 89(5), 053502 (2006). https://doi.org/10.1063/1.2261336

    Article  CAS  Google Scholar 

  33. Wang, M., Lee, K.E., Hahn, S.H., Kim, E.J., Kim, S., Chung, J.S., Shin, E.W., Park, C.: Optical and photoluminescent properties of sol-gel Al-doped ZnO thin films. Mater. Lett. 61(4, 5), 1118–1121 (2007). https://doi.org/10.1016/j.matlet.2006.06.065

    Article  CAS  Google Scholar 

  34. Mhamdi, A., Alkhalifah, M.S., Rajeh, S., Labidi, A., Amlouk, M., Belgacema, S.: Electrical and gas sensing investigations on the sprayed ZnO:Cu thin films. Physica B: Condensed Matter. 521(15), 178–187 (2017). https://doi.org/10.1016/j.physb.2017.06.069

    Article  CAS  Google Scholar 

  35. Wienke, J., Booij, A.S.: ZnO:In deposition by spray pyrolysis-Influence of the growth conditions on the electrical and optical properties. Thin Solid Films. 516(14), 4508–4512 (2008). https://doi.org/10.1016/j.tsf.2007.05.078

    Article  CAS  Google Scholar 

  36. Tsai, Y., Wang, N., Tsai, C.L.: Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering. Thin Solid films. 518(17), 4955–4959 (2010). https://doi.org/10.1016/j.tsf.2010.03.086

    Article  CAS  Google Scholar 

  37. Devasia, S., Athma, P.V., Shaji, M., Kumar Santhosh, M.C., Anila, E.I.: Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity. Physica B: Condensed Matter. 533, 83–89 (2018). https://doi.org/10.1016/j.physb.2018.01.004

    Article  CAS  Google Scholar 

  38. Cheong, K.Y., Muti, N., Ramanan, S.: Electrical and optical studies of ZnO:Ga thin films fabricated via the sol–gel technique. Thin Solid Films. 410(1-2, 142), –146 (2002). https://doi.org/10.1016/S0040-6090(02)00286-9

  39. Bahadur, N., Srivastava, A.K., Kumar, S., Deepa, M., Nag, B.: Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films. 518(18), 5257–5264 (2010). https://doi.org/10.1016/j.tsf.2010.04.113

    Article  CAS  Google Scholar 

  40. Lin, Y.C., Hsu, C.Y., Hung, S.K., Chang, C.H., Wen, D.C.: The structural and optoelectronic properties of Ti-doped ZnO thin films prepared by introducing a Cr buffer layer and post-annealing. Appl. Surf. Sci. 258(24), 9891–9895 (2012). https://doi.org/10.1016/j.apsusc.2012.06.046

    Article  CAS  Google Scholar 

  41. Benzarouk, H., Drici, A., Mekhnache, M., Amara, A., Guerioune, M., Bernede, J.C., Bendjffal, H.: Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP). Superlattice Microstruct. 52(3), 594–604 (2012). https://doi.org/10.1016/j.spmi.2012.06.007

    Article  CAS  Google Scholar 

  42. Xian, F., Li, X.: Effect of Nd doping level on optical and structural properties of ZnO:Nd thin films synthesized by the sol–gel route. Opt. Laser Technol. 45(1), 508–512 (2013). https://doi.org/10.1016/j.optlastec.2012.06.002

    Article  CAS  Google Scholar 

  43. Kumar, S., Sahare, P.D.: Nd-doped ZnO as a multifunctional nanomaterial. J. Rare Earths. 30(8), 761–768 (2012). https://doi.org/10.1016/S1002-0721(12)60126-4

    Article  CAS  Google Scholar 

  44. Jr Franco, A., Pessoni, H.V.S., Ribeiro, P.R.T., Machado, F.L.A.: Magnetic properties of Co-doped ZnO nanoparticles. J Magn Magn Mater. 426, 347–350 (2017). https://doi.org/10.1016/j.jmmm.2016.10.159

    Article  CAS  Google Scholar 

  45. Wu, X., Wei, Z., Zhang, L., Wang, X., Yang, H., Jiang, J.: Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. J Nanomater. 9, 1–6 (2014). https://doi.org/10.1155/2014/792102

    Article  CAS  Google Scholar 

  46. Ergin, B., Ketenci, E., Atay, F.: Characterization of ZnO films obtained by ultrasonic spray pyrolysis technique. International Journal of Hydrogen Energy. 34(12), 5249–5254 (2009). https://doi.org/10.1016/j.ijhydene.2008.09.108

    Article  CAS  Google Scholar 

  47. Dhanalakshmi, M., Saravanakumar, K., Prabavathi, S.L., Abinaya, M., Muthuraj, V.: Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants. J Alloys Compd. 763, 512–524 (2018). https://doi.org/10.1016/j.jallcom.2018.05.340

    Article  CAS  Google Scholar 

  48. Nag, B.R.: Electron transport in compound semiconductors, vol. 461. Springer- Verlag, Berlin Heildelberg, New York (1980) ISBN 978-3-642-81416-7.

    Book  Google Scholar 

  49. Williamson, G.K., Smallman, R.E.: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philosophical Magazine. 1(1), 34–46 (1956). https://doi.org/10.1080/14786435608238074

    Article  CAS  Google Scholar 

  50. F. Paraguay, D., W. Estrada, L., D. R. Acosta, N., Andrade, E., Miki-Yoshida, M.: Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films. 350, 192–202 (1999). https://doi.org/10.1016/s0040-6090(99)00050-4

    Article  Google Scholar 

  51. Castaneda, L., Alonsso, J.C., Ortiz, A., Andrade, E., Saniger, J.M., Banuelos, J.G.: Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater Chem Phys. 77(3), 938–944 (2002) PII:S0254-0584(02)00193-1

    Article  Google Scholar 

  52. Shan, F.K., Liu, G.X., Lee, W.J., Lee, G.H., Kim, I.S., Shin, B.C.: Ga2O3 thin film deposited by atomic layer deposition with high plasma power. Integrated Ferroelectrics. 80, 197–206 (2006). https://doi.org/10.1080/10584580600657666

    Article  CAS  Google Scholar 

  53. Lissberger, P.: Ellipsometry and polarised light. Nature. 269, 270 (1977). https://doi.org/10.1038/269270a0

    Article  Google Scholar 

  54. Hu, Z., Wang, G., Huang, Z., Chu, J.: Optical properties of Bi3.25La0.75Ti3O12 thin films using spectroscopic ellipsometry. J. App. Phys. 93, 3811 (2003). https://doi.org/10.1063/1.1559003

    Article  CAS  Google Scholar 

  55. Kose, S., Atay, F., Bilgin, V., Akyuz, I.: Some physical properties of copper oxide films: The effect of substrate temperature. Mater. Chem. Phys. 111, 351–358 (2008). https://doi.org/10.1016/j.matchemphys.2008.04.025

    Article  CAS  Google Scholar 

  56. Kawar, R.K., Chigare, P.S., Patil, P.S.: Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films. Appl Surf Sc. 206(1-4), 90–101 (2003). https://doi.org/10.1016/S0169-4332(02)01191-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Atay.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cergel, M.S., Atay, F. Role of Ir incorporation on structural, surface, optical, and electrical properties of ultrasonically produced ZnO films. J Aust Ceram Soc 59, 437–447 (2023). https://doi.org/10.1007/s41779-023-00831-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00831-9

Keywords

Navigation