Skip to main content

Advertisement

Log in

Preparation and characterization of calcium hexaaluminate (CA6) porous ceramic for application in high-temperature flue gas filtration

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The purpose of this work was to provide a feasible gel-casting method to develop a high-performance porous ceramic for high-temperature flue gas filtration. The calcium hexaaluminate (CA6) porous ceramics were fabricated by an aqueous gel-casting process using CaCO3 and ρ-Al2O3 powders as raw materials. The properties of CA6 porous ceramics in terms of microstructural characteristics, phase composition, pore size distribution, open porosity, compressive strength, thermal conductivity, and air permeability have been investigated. The results indicated that completely developed lamellar CA6 grains can form a stepped structure and an irregular structure due to enough growth space, which could significantly improve the properties of the CA6 porous ceramics. The CA6 samples showed a high open porosity of 68.1% at a low thermal conductivity of 0.48 W/(m/K). In particular, the CA6 samples possess high compressive strength of 7.9–62.0 MPa and high air permeability of 5.19 × 10−7 m2–2.01 × 10−6 m2 (Darcy permeability, k1). Based on these good properties, the CA6 porous ceramic could resist the impact of gas and reduce heat loss in flue gas in high-temperature environment, which indicated that it could be appropriative for applications of high-temperature flue gas filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shen, M.Y., Tong, L.G., Ding, H.S., et al.: Numerical investigation of flow stratification behavior of binary particle mixture for high-temperature flue gas filtration on an inclined moving bed. Powder Technol. 382, 339–350 (2021)

    Article  CAS  Google Scholar 

  2. Tong, L.G., Chen, X.D., Zhang, Y.P., et al.: Adhesion and desorption characteristics of high-temperature condensed flue gas dust on filter material surface. Powder Technol. 354, 760–764 (2019)

    Article  CAS  Google Scholar 

  3. Nwogu, N.C., Kajama, M.N., Orakwe, I., et al.: High molecular permeance dual-layer ceramic membrane for capturing CO2 from flue gas stream. Energy Power Eng. 7(9), 418–425 (2015)

    Article  Google Scholar 

  4. Peukert, W.: High temperature filtration in the process industry. Filtr. & Sep. 35(5), 461–464 (1998)

    Article  CAS  Google Scholar 

  5. Chen, Q.Q., Liu, Y.J., Deng, H.J., et al.: Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration. Polym. Eng. Sci. 60(11), 2887–2894 (2020)

    Article  CAS  Google Scholar 

  6. An, Y., Yu, S.Y., Li, S.M., et al.: Melt-electrospinning of polyphenylene sulfide. Fibers Polym. 19, 2507–2513 (2018)

    Article  CAS  Google Scholar 

  7. Krasnyi, B.L., Tarasovskii, V.P., Yu, A., et al.: Ceramic filters and their use for cleaning dust-laden hot exit gases. Refract. Ind. Ceram. 46(2), 116–119 (2005)

    Article  CAS  Google Scholar 

  8. Tkachev, A.G., Tkacheva, O.N.: High-temperature ceramic filter for furnace gas analyzer. Glass Ceram. 69, 388–389 (2013)

    Article  CAS  Google Scholar 

  9. Xu, X.H., Liu, X., Wu, J.F., et al.: Effect of preparation conditions on gas permeability parameters of porous SiC ceramics. J. Eur. Ceram. Soc. 41(6), 3252–3263 (2001)

    Article  Google Scholar 

  10. Gómez-Martín, A., Orihuela, M.P., Becerra, J.A., et al.: Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater. Des. 107(5), 450–460 (2016)

    Article  Google Scholar 

  11. Chandradass, J., Bae, D.S., Kim, K.H.: Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process. J. Non-Cryst. Solids. 355(48/49), 2429–2432 (2009)

    Article  CAS  Google Scholar 

  12. Kawaguchia, K., Suzuki, Y., Gotoc, T., Choc, S.H., et al.: Homogeneously bulk porous calcium hexaaluminate (CaAl12O19): reactive sintering and microstructure development. Ceram. Int. 44(4), 4462–4466 (2018)

    Article  Google Scholar 

  13. Utsunomiya, A., Tanaka, K., Morikawa, H., et al.: Structure refinement of CaO·6Al2O3. J. Solid State Chem. 75(1), 197–200 (1988)

    Article  CAS  Google Scholar 

  14. Pan, L.P., He, Z., Li, Y.W., et al.: Investigation of fracture behavior of cement-bonded corundum refractory using wedge splitting test and digital image correlation method. J. Eur. Ceram. Soc. 40(4), 1728–1737 (2020)

    Article  CAS  Google Scholar 

  15. Yi, S., Huang, Z.H., Huang, J.T., et al.: Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties. Sci. Rep. 4, 4333 (2014)

    Article  Google Scholar 

  16. Wu, M.F., Li, Y.B., Li, S.J., et al.: Preparation and properties of high-purity porous calcium hexaluminate material. Key Eng. Mater. 697, 547–550 (2016)

    Article  Google Scholar 

  17. Shi, J., Yan, Y., Hu, Z.H.: Preparation of light calcium hexaluminate by two-step method. Non-Met Mines. 39, 14–16 (2016)

    Google Scholar 

  18. Zhou, Q.R., Li, Y.B., Xiang, R.F., et al.: Ultra-low-density calcium hexaaluminate foams prepared by sintering of thermo-foamed alumina-calcium carbonate powder dispersions in molten sucrose. J. Aust. Ceram. Soc. 56, 301–308 (2020)

    Article  Google Scholar 

  19. Liu, X.Y., Yang, D.X., Huang, Z.H., et al.: Novel synthesis method and characterization of porous calcium hexaluminate ceramics. J. Am. Ceram. Soc. 97, 2702–2704 (2014)

    Article  CAS  Google Scholar 

  20. Yuan, L., Liu, Z.L., Hou, X.H., et al.: Fibrous ZrO2-mullite porous ceramics fabricated by a hydratable alumina based aqueous gel-casting process. Ceram. Int. 45(7), 8824–8831 (2019)

    Article  CAS  Google Scholar 

  21. Ma, W.P., Brown, P.W.: Mechanisms of reaction of hydratable aluminas. J. Am. Ceram. Soc. 82(2), 453–456 (1999)

    Article  CAS  Google Scholar 

  22. Park, J.H., Lee, M.K., Rhee, C.K., et al.: Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers. Mater. Sci. Eng. A. 375–377, 1263–1268 (2004)

    Article  Google Scholar 

  23. Zhao, F., Ge, T.Z., Zhang, L.X., et al.: A novel method for the fabrication of porous calcium hexaluminate (CA6) ceramics using pre-fired CaO/Al2O3 pellets as calcia source. Ceram. Int. 46, 4762–4770 (2020)

    Article  CAS  Google Scholar 

  24. An, L., Chan, H.M., Soni, K.K.: Control of calcium hexaluminate grain morphology in in-situ toughened ceramic. J. Mater. Sci. 31, 3223–3229 (1996)

    Article  CAS  Google Scholar 

  25. DomõÂnguez, C., Chevalier, J., Torrecillas, R., et al.: Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 21, 381–387 (2001)

    Article  Google Scholar 

  26. Maquin, B., Goyhénèche, J.M., Derré, A., et al.: Thermal conductivity of submicrometre particles: carbon blacks and solid solutions containing C, B and N. J. Phys. D: Appl. Phys. 33, 8–17 (2000)

    Article  CAS  Google Scholar 

  27. Wang, X.J., Wang, X.X., Niu, X.H., et al.: Effects of pore complex shape, distribution and overlap on the thermal conductivity of porous insulation materials. Int. J. Thermophys. 41, 145 (2020)

    Article  Google Scholar 

  28. Li, Y.J., Yang, X.F., Liu, D.H., et al.: Permeability of the porous Al2O3 ceramic with bimodal pore size distribution. Ceram. Int. 45(5), 5952–5957 (2019)

    Article  CAS  Google Scholar 

  29. Liu, D.H., Li, Y.J., Lv, C.J., et al.: Permeating behaviour of porous SiC ceramics fabricated with different SiC particle sizes. Ceram. Int. 4(15), 5610–5616 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51974074, No. 51874083, No. 52074070) and the State Key Program of the National Natural Science Foundation of China (No. 51932008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengguo Yan or Endong Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Yao, X., Yan, Z. et al. Preparation and characterization of calcium hexaaluminate (CA6) porous ceramic for application in high-temperature flue gas filtration. J Aust Ceram Soc 58, 1701–1708 (2022). https://doi.org/10.1007/s41779-022-00804-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00804-4

Keywords

Navigation