Skip to main content

Sr/Smco-doped hydroxyapatites: experimental characterization and theoretical research

Abstract

This paper goes into extensive detail about the theoretical and experimental characterization of \(\mathrm{Sr}\) doped hydroxyapatite \((\mathrm{HAp})\) samples that have been doped with \(\mathrm{Sm}\) in various amounts. To accomplish this, five \(\mathrm{HAps}\) containing a constant \(0.133\mathrm{ at}. \%\) of \(\mathrm{Sr}\) were additionally doped with \(\mathrm{Sm}\) at varied amounts and synthesized by a method of wet chemical. In addition, the density functional theory (DFT) was used to model all of these samples. According to theoretical results, the bandgap energy declined continuously from \(4.6297\) to \(4.4034\mathrm{ eV}\). The linear absorption coefficient increased with increasing amounts of \(\mathrm{Sm}\) in all samples, while this parameter decreased with increasing photon energy. There was a reduction in both the lattice parameter \(a\) and the volume of the unit cell, but there was also an increase in the lattice parameter \(c\) and theoretical density. Accordingly, the experiment’s results were as follows:\(\mathrm{HAp}\) phase (above \(98\mathrm{\%}\) for all of the samples) and beta-tricalcium phosphate \(\upbeta -\mathrm{TCP}\) were both confirmed as the major phase and minor phase, respectively, by X-ray diffraction \((\mathrm{XRD })\), FT-Raman spectroscopy and the Fourier transform infrared \((\mathrm{FTIR})\) measurements. The addition of \(\mathrm{Sm}\) increased in the \(\upbeta -\mathrm{TCP}\) phase from \(0.62\) to \(0.86\%.\) Same as theoretical results, it was also found that density was increasing and the volume of the unit cell decreased. An increase in anisotropic energy density and a decrease in crystallinity were discovered. The values are calculated based on the molar ratio, which was discovered to be close to those for stoichiometric \(\mathrm{HAp}\) in all samples \((1.67).\) Based on the results of the thermal study, all samples were confirmed to be thermally stable. \(\mathrm{Sm}\) content was discovered to have an effect on cell viability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Goldberg, M., Protsenko, P., Smirnov, V., Antonova, O., Smirnov, S., Konovalov, A., Vorckachev, K., Kudryavtsev, E., Barinov, S., Komlev, V.: The enhancement of hydroxyapatite thermal stability by Al doping. J. Mater. Res. Technol. 9, 76–88 (2020)

    CAS  Article  Google Scholar 

  2. Shkir, M., Yahia, I., Kilany, M., Abutalib, M., AlFaify, S., Darwish, R.: Facile nanorods synthesis of KI: HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram. Int. 45, 50–55 (2019)

    CAS  Article  Google Scholar 

  3. Albulym, O., Kaygili, O., Hussien, M.S., Zahran, H., Kilany, M., Yahia, I., Bulut, N., Darwish, R., El-Kott, A.F.: Antimicrobial activity of Ga-doped hydroxyapatite nanostructures: synthesis, morphological, spectroscopic, and dielectric properties. J. Biomater Tissue Eng. 9, 881–889 (2019)

    Article  Google Scholar 

  4. Kaygili, O., Keser, S., Selçuk, A.B., Bulut, N., Koytepe, S., Yahia, I., Ates, T.: The effects of gamma irradiation on dielectric properties of Ag/Gd co-doped hydroxyapatites. J. Mater. Sci. Mater. Electron. 30, 10443–10453 (2019)

    CAS  Article  Google Scholar 

  5. Ibrahimzade, L., Kaygili, O., Dundar, S., Ates, T., Dorozhkin, S.V., Bulut, N., Koytepe, S., Ercan, F., Gürses, C., Hssain, A.H.: Theoretical and experimental characterization of Pr/Ce co-doped hydroxyapatites. J. Mol. Struct. 1240, 130557 (2021)

    CAS  Article  Google Scholar 

  6. Acar, S., Kaygili, O., Ates, T., Dorozhkin, S.V., Bulut, N., Ates, B., Koytepe, S., Ercan, F., Kebiroglu, H., Hssain, A.H.: Experimental characterization and theoretical investigation of Ce/Yb co-doped hydroxyapatites. Mater. Chem. Phys. 276, 125444 (2022)

    CAS  Article  Google Scholar 

  7. Ramesh, S., Adzila, S., Tan, C.: Properties of hydroxyapatite synthesize by wet chemical method. J. Ceram. Process. Res. 14, 448–452 (2013)

    Google Scholar 

  8. Cacciotti, I.: Cationic and anionic substitutions in hydroxyapatite. Handbook of bioceramics and biocomposites. 145–211 (2016)

  9. Tite, T., Popa, A.-C., Balescu, L.M., Bogdan, I.M., Pasuk, I., Ferreira, J.M., Stan, G.E.: Cationic substitutions in hydroxyapatite: Current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 11, 2081 (2018)

    Article  CAS  Google Scholar 

  10. Arcos, D., Vallet-Regí, M.: Substituted hydroxyapatite coatings of bone implants. J Mater Chem B. 8, 1781–1800 (2020)

    CAS  Article  Google Scholar 

  11. Graziani, G., Boi, M., Bianchi, M.: A review on ionic substitutions in hydroxyapatite thin films: Towards complete biomimetism. Coatings 8, 269 (2018)

    Article  CAS  Google Scholar 

  12. Elliott, J.: Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 18, 111-189 (1994)

  13. Blake, G., Zivanovic, M., McEwan, A., Ackery, D.: Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med. 12, 447–454 (1986)

    CAS  Article  Google Scholar 

  14. Marie, P., Ammann, P., Boivin, G., Rey, C.: Mechanisms of action and therapeutic potential of strontium in bone. Calcif. Tissue Int. 69, 121 (2001)

    CAS  Article  Google Scholar 

  15. Marie, P.: Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 16, S7–S10 (2005)

    CAS  Article  Google Scholar 

  16. Ammann, P.: Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int. 16, S11–S15 (2005)

    CAS  Article  Google Scholar 

  17. Canalis, E., Hott, M., Deloffre, P., Tsouderos, Y., Marie, P.: The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18, 517–523 (1996)

    CAS  Article  Google Scholar 

  18. Chang, W., Tu, C., Chen, T.-H., Komuves, L., Oda, Y., Pratt, S.A., Miller, S., Shoback, D.: Expression and signal transduction of calcium-sensing receptors in cartilage and bone. J. Endocrinol. 140, 5883–5893 (1999)

    CAS  Article  Google Scholar 

  19. Ammann, P., Shen, V., Robin, B., Mauras, Y., Bonjour, J.P., Rizzoli, R.: Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J. Bone. Miner. Res. 19, 2012–2020 (2004)

    CAS  Article  Google Scholar 

  20. Grynpas, M., Hamilton, E., Cheung, R., Tsouderos, Y., Deloffre, P., Hott, M., Marie, P.: Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 18, 253–259 (1996)

    CAS  Article  Google Scholar 

  21. Marie, P.J., Hott, M., Modrowski, D., De Pollak, C., Guillemain, J., Deloffre, P., Tsouderos, Y.: An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J. Bone. Miner. Res. 8, 607–615 (1993)

    CAS  Article  Google Scholar 

  22. Marie, P.J.: Strontium ranelate: new insights into its dual mode of action. Bone 40, S5–S8 (2007)

    CAS  Article  Google Scholar 

  23. Leroux, L., Lacout, J.: Preparation of calcium strontium hydroxyapatites by a new route involving calcium phosphate cements. J. Mater. Res. 16, 171–178 (2001)

    CAS  Article  Google Scholar 

  24. Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G.: Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3, 961–969 (2007)

    CAS  Article  Google Scholar 

  25. Xue, W., Moore, J.L., Hosick, H.L., Bose, S., Bandyopadhyay, A., Lu, W., Cheung, K.M., Luk, K.D.: Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res A. 79, 804–814 (2006)

    Article  CAS  Google Scholar 

  26. Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13, 94–117 (1998)

    CAS  Article  Google Scholar 

  27. Jha, L., Best, S., Knowles, J., Rehman, I., Santos, D.J., Bonfield, W.: Preparation and characterization of fluoride-substituted apatites. J. Mater. Sci. Mater. Med. 8, 185–191 (1997)

    CAS  Article  Google Scholar 

  28. Pezzatini, S., Solito, R., Morbidelli, L., Lamponi, S., Boanini, E., Bigi, A., Ziche, M.: The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. J Biomed Mater Res A. 76, 656–663 (2006)

    Article  CAS  Google Scholar 

  29. Tadic, D., Beckmann, F., Schwarz, K., Epple, M.: A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering. Biomaterials 25, 3335–3340 (2004)

    CAS  Article  Google Scholar 

  30. Zhu, K., Yanagisawa, K., Shimanouchi, R., Onda, A., Kajiyoshi, K.: Preferential occupancy of metal ions in the hydroxyapatite solid solutions synthesized by hydrothermal method. J. Eur. Ceram. Soc. 26, 509–513 (2006)

    CAS  Article  Google Scholar 

  31. Bigi, A., Boanini, E., Capuccini, C., Gazzano, M.: Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chim. Acta. 360, 1009–1016 (2007)

    CAS  Article  Google Scholar 

  32. Kaygili, O., Keser, S., Dorozhkin, S.V., Yakuphanoglu, F., Al-Ghamdi, A.A., Kirbag, S., Sertkaya, D., Ates, T., Gursoy, N.C.: Structural and dielectrical properties of Ag-and Ba-substituted hydroxyapatites. J. Inorg. Organomet. Polym. Mater. 24, 1001–1008 (2014)

    CAS  Article  Google Scholar 

  33. Kulanthaivel, S., Roy, B., Agarwal, T., Giri, S., Pramanik, K., Pal, K., Ray, S.S., Maiti, T.K., Banerjee, I.: Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application. Mater. Sci. Eng. C. 58, 648–658 (2016)

    CAS  Article  Google Scholar 

  34. Kaygili, O., Keser, S., Kom, M., Eroksuz, Y., Dorozhkin, S.V., Ates, T., Ozercan, I.H., Tatar, C., Yakuphanoglu, F.: Strontium substituted hydroxyapatites: synthesis and determination of their structural properties, in vitro and in vivo performance. Mater. Sci. Eng. C. 55, 538–546 (2015)

    CAS  Article  Google Scholar 

  35. Stipniece, L., Salma-Ancane, K., Borodajenko, N., Sokolova, M., Jakovlevs, D., Berzina-Cimdina, L.: Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram. Int. 40, 3261–3267 (2014)

    CAS  Article  Google Scholar 

  36. Tank, K.P., Chudasama, K.S., Thaker, V.S., Joshi, M.J.: Pure and zinc doped nano-hydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies. J. Cryst. Growth. 401, 474–479 (2014)

    CAS  Article  Google Scholar 

  37. Kaygili, O., Dorozhkin, S.V., Ates, T., Al-Ghamdi, A.A., Yakuphanoglu, F.: Dielectric properties of Fe doped hydroxyapatite prepared by sol–gel method. Ceram. Int. 40, 9395–9402 (2014)

    CAS  Article  Google Scholar 

  38. André, R., Paris, E., Gurgel, M., Rosa, I., Paiva-Santos, C., Li, M., Varela, J.A., Longo, E.: Structural evolution of Eu-doped hydroxyapatite nanorods monitored by photoluminescence emission. J. Alloys Compd. 531, 50–54 (2012)

    Article  CAS  Google Scholar 

  39. Lukić, M.J., Veselinović, L., Stevanović, M., Nunić, J., Dražič, G., Marković, S., Uskoković, D.: Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Mater. Lett. 122, 296–300 (2014)

    Article  CAS  Google Scholar 

  40. Lindahl, C., Xia, W., Lausmaa, J., Borchardt, P., Engqvist, H.: Strontium and silicon co-doped apatite coating: preparation and function as vehicles for ion delivery. J. Biomater. Nanobiotechnol. 3, 335–341 (2012)

    CAS  Article  Google Scholar 

  41. Kaygili, O., Keser, S.: Sol–gel synthesis and characterization of Sr/Mg, Mg/Zn and Sr/Zn co-doped hydroxyapatites. Mater. Lett. 141, 161–164 (2015)

    CAS  Article  Google Scholar 

  42. Kaygili, O., Keser, S.: Zr/Mg, Zr/Sr and Zr/Zn co-doped hydroxyapatites: synthesis and characterization. Ceram. Int. 42, 9270–9273 (2016)

    CAS  Article  Google Scholar 

  43. Ahmed, M., Mansour, S., Al-Wafi, R., Abdel-Fattah, E.: Nanofibers scaffolds of co-doped Bi/Sr-hydroxyapatite encapsulated into polycaprolactone for biomedical applications. J. Mater. Res. Technol. 13, 2297–2309 (2021)

    CAS  Article  Google Scholar 

  44. Šupová, M.: Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41, 9203–9231 (2015)

    Article  CAS  Google Scholar 

  45. Ciobanu, C., Iconaru, S.L., Popa, C., Motelica-Heino, M., and Predoi, D.: Evaluation of samarium doped hydroxyapatite, ceramics for medical application: antimicrobial activity. J. Nanomater. 2015, (2015)

  46. Alicka, M., Sobierajska, P., Kornicka, K., Wiglusz, R.J., Marycz, K.: Lithium ions (Li+) and nanohydroxyapatite (nHAp) doped with Li+ enhance expression of late osteogenic markers in adipose-derived stem cells. Potential theranostic application of nHAp doped with Li+ and co-doped with europium (III) and samarium (III) ions. Mater. Sci. Eng. C. 99, 1257–1273 (2019)

    CAS  Article  Google Scholar 

  47. Morais, D.S., Coelho, J., Ferraz, M.P., Gomes, P.S., Fernandes, M.H., Hussain, N.S., Santos, J.D., Lopes, M.A.: Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. J. Mater. Chem. B. 2, 5872–5881 (2014)

    CAS  Article  Google Scholar 

  48. Iconaru, S., Stanciu, G., Hristu, R., Ghita, R.: Properties of samarium doped hydroxyapatite thin films deposited by evaporation. Rom. Rep. Phys. 69, 508 (2017)

    Google Scholar 

  49. Turculet, C.S., Prodan, A.M., Negoi, I., Teleanu, G., Popa, M., Andronescu, E., Beuran, M., Stanciu, G.A., Hristu, R., Badea, M.L.: Preliminary evaluation of the antifungal activity of samarium doped hydroxyapatite thin films. Rom. Biotechnol. Lett. 23, 13928–13932 (2018)

    Google Scholar 

  50. Lv, Y., Shi, Q., Jin, Y., Ren, H., Qin, Y., Wang, B., and Song, S.: Preparation and luminescent properties of the antibacterial materials of the La3+ Doped Sm3+-hydroxyapatite. J. Phys.: Conf. Ser. IOP Publishing. (2018)

  51. Sathishkumar, S., Louis, K., Shinyjoy, E., Gopi, D.: Tailoring the Sm/Gd-substituted hydroxyapatite coating on biomedical AISI 316L SS: exploration of corrosion resistance, protein profiling, osteocompatibility, and osteogenic differentiation for orthopedic implant applications. Ind. Eng. Chem. Res. 55, 6331–6344 (2016)

    CAS  Article  Google Scholar 

  52. Kaygili, O., Vural, G., Keser, S., Yahia, I., Bulut, N., Ates, T., Koytepe, S., Temuz, M.M., Ercan, F., İnce, T.: Ce/Sm co-doped hydroxyapatites: synthesis, characterization, and band structure calculation. J. Aust. Ceram. Soc. 57, 305–317 (2021)

    CAS  Article  Google Scholar 

  53. Chen, P., Wang, F., Qiao, Y., and Zhang, Z.: Luminescence of samarium doped hydroxyapatite containing strontium: effects of doping concentration. J. Rare Earths. (2021)

  54. Mahmood, B.K., Kaygili, O., Bulut, N., Dorozhkin, S.V., Ates, T., Koytepe, S., Gürses, C., Ercan, F., Kebiroglu, H., Agid, R.S.: Effects of strontium-erbium co-doping on the structural properties of hydroxyapatite: an Experimental and theoretical study. Ceram. Int. 46, 16354–16363 (2020)

    CAS  Article  Google Scholar 

  55. Agid, R.S., Kaygili, O., Bulut, N., Dorozhkin, S.V., Ates, T., Koytepe, S., Ates, B., Ercan, I., İnce, T., Mahmood, B.K.: Investigation of the effects of Pr doping on the structural properties of hydroxyapatite: an experimental and theoretical study. J. Aust. Ceram. Soc. 56, 1501–1513 (2020)

    Article  CAS  Google Scholar 

  56. Tanış, E.: New optoelectronic material based on biguanide for orange and yellow organic light emitting diode: a combined experimental and theoretical study. J. Mol. Liq. 358, 119161 (2022)

    Article  CAS  Google Scholar 

  57. Avakyan, L.A., Paramonova, E.V., Coutinho, J., Öberg, S., Bystrov, V.S., Bugaev, L.A.: Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 148, 154706 (2018)

    Article  CAS  Google Scholar 

  58. Slepko, A., Demkov, A.A.: First-principles study of the biomineral hydroxyapatite. Phys. Rev. B. 84, 134108 (2011)

    Article  CAS  Google Scholar 

  59. Ignjatović, N.L., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M.G., Škapin, S., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S.: Rare-earth (Gd 3+, Yb 3+/Tm 3+, Eu 3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Sci. Rep. 9, 1–15 (2019)

    Article  CAS  Google Scholar 

  60. Moradi, K., Alvani, A.S.: First-Principles study on Sr-doped hydroxyapatite as a biocompatible filler for photo-cured dental composites. J. Aust. Ceram. Soc. 56, 591–598 (2020)

    CAS  Article  Google Scholar 

  61. Tsukada, M., Wakamura, M., Yoshida, N., Watanabe, T.: Band gap and photocatalytic properties of Ti-substituted hydroxyapatite: comparison with anatase-TiO2. J. Mol. Catal. A Chem. 338, 18–23 (2011)

    CAS  Google Scholar 

  62. Jiménez-Flores, Y., Suárez-Quezada, M., Rojas-Trigos, J., Lartundo-Rojas, L., Suárez, V., Mantilla, A.: Characterization of Tb-doped hydroxyapatite for biomedical applications: optical properties and energy band gap determination. J. Mater. Sci. 52, 9990–10000 (2017)

    Article  CAS  Google Scholar 

  63. Todoh, M., Tadano, S., Giri, B., Nishimoto, M.: Effect of gradual demineralization on the mineral fraction and mechanical properties of cortical bone. J. Biomech. Eng. 4, 230–238 (2009)

    Article  Google Scholar 

  64. Wong, F.S., Elliott, J.C.: Theoretical explanation of the relationship between backscattered electron and x-ray linear attenuation coefficients in calcified tissues. Scanning. 19, 541–546 (1997)

    CAS  Article  Google Scholar 

  65. Shkir, M., Kilany, M., Yahia, I.: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: a systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923–14931 (2017)

    CAS  Article  Google Scholar 

  66. Badran, H., Yahia, I., Hamdy, M.S., Awwad, N.: Lithium-doped hydroxyapatite nano-composites: synthesis, characterization, gamma attenuation coefficient and dielectric properties. Radiat. Phys. Chem. 130, 85–91 (2017)

    CAS  Article  Google Scholar 

  67. İnce, T., Kaygili, O., Tatar, C., Bulut, N., Koytepe, S., Ates, T.: The effects of Ni-addition on the crystal structure, thermal properties and morphology of Mg-based hydroxyapatites synthesized by a wet chemical method. Ceram. Int. 44, 14036–14043 (2018)

    Article  CAS  Google Scholar 

  68. Akpan, E., Dauda, M., Kuburi, L., Obada, D., Dodoo-Arhin, D.: A comparative study of the mechanical integrity of natural hydroxyapatite scaffolds prepared from two biogenic sources using a low compaction pressure method. Results Phys. 17, 103051 (2020)

    Article  Google Scholar 

  69. Cullity, B.D.: Elements of X-ray diffraction, Addison. Wesley Mass. 127–31 (1978)

  70. Venkateswarlu, K., Bose, A.C., Rameshbabu, N.: X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis. Phys. Rev. B Condens. Matter. 405, 4256–4261 (2010)

    CAS  Article  Google Scholar 

  71. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20, 2377–2387 (2000)

    CAS  Article  Google Scholar 

  72. Rokhlin, L.L.: Magnesium alloys containing rare earth metals: structure and properties.Crc Press. (2003)

  73. Tang, Y.-Q., Wang, Q.-Y., Ke, Q.-F., Zhang, C.-Q., Guan, J.-J., Guo, Y.-P.: Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. J. Eur. Ceram. Soc. 387, 124166 (2020)

    CAS  Google Scholar 

  74. Van, H.N., Vu, N.H., Pham, V.-H., Van Huan, P., Hoan, B.T., Nguyen, D.-H., Le Manh, T.: A novel upconversion emission material based on Er3+-Yb3+-Mo6+ tridoped hydroxyapatite/tricalcium phosphate (HA/β-TCP). J. Alloys Compd. 827, 154288 (2020)

    CAS  Article  Google Scholar 

  75. Kannan, S., Rocha, J., Ferreira, J.: Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites. J. Alloys Compd. 16, 286–291 (2006)

    CAS  Google Scholar 

  76. Li, Z., Lam, W., Yang, C., Xu, B., Ni, G., Abbah, S., Cheung, K., Luk, K., Lu, W.: Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials 28, 1452–1460 (2007)

    CAS  Article  Google Scholar 

  77. Guo, D., Hao, Y., Li, H., Fang, C., Sun, L., Zhu, H., Wang, J., Huang, X., Ni, P., and Xu, K.: Influences of Sr dose on the crystal structure parameters and Sr distributions of Sr‐incorporated hydroxyapatite. J. Biomed. Mater. Res. Part B Appl. Biomater. 101, 1275–1283 (2013)

  78. Cacciotti, I.: Multisubstituted hydroxyapatite powders and coatings: The influence of the codoping on the hydroxyapatite performances. Int. J. Appl. Ceram. Technol. 16, 1864–1884 (2019)

    CAS  Article  Google Scholar 

  79. Venkatasubbu, G.D., Ramasamy, S., Ramakrishnan, V., Avadhani, G., Thangavel, R., Kumar, J.: Investigations on zinc doped nanocrystalline hydroxyapatite. J. Nanosci. Nanotechnol. 2, 1–23 (2011)

    Google Scholar 

  80. Boanini, E., Gazzano, M., Bigi, A.: Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 6, 1882–1894 (2010)

    CAS  Article  Google Scholar 

  81. Liu, H., Cui, X., Lu, X., Liu, X., Zhang, L., Chan, T.-S.: Mechanism of Mn incorporation into hydroxyapatite: insights from SR-XRD, Raman, XAS, and DFT calculation. Chem. Geol. 579, 120354 (2021)

    CAS  Article  Google Scholar 

  82. Shah, F.A.: Characterization of synthetic hydroxyapatite fibers using high-resolution, polarized Raman spectroscopy. Appl. Spectrosc. 75, 475–479 (2021)

    CAS  Article  Google Scholar 

  83. Stammeier, J.A., Purgstaller, B., Hippler, D., Mavromatis, V., Dietzel, M.: In-situ Raman spectroscopy of amorphous calcium phosphate to crystalline hydroxyapatite transformation. MethodsX. 5, 1241–1250 (2018)

    Article  Google Scholar 

  84. Guerra-López, J.R., Echeverría, G.A., Güida, J.A., Viña, R., Punte, G.: Synthetic hydroxyapatites doped with Zn (II) studied by X-ray diffraction, infrared, Raman and thermal analysis. J. Phys. Chem. Solids. 81, 57–65 (2015)

    Article  CAS  Google Scholar 

  85. Daryan, S.H., Khavandi, A., Javadpour, J.: Surface engineered hollow hydroxyapatite microspheres: hydrothermal synthesis and growth mechanisms. Solid State Sci. 106, 106301 (2020)

    CAS  Article  Google Scholar 

  86. Shaly, A.A., Priya, G.H., Linet, J.M.: An outlook on the mechanical attributes and load curve analysis of hydrothermally acquired hydroxyapatite bioceramic nanoparticles. Phys. Rev. B Condens. Matter. 590, 412223 (2020)

    CAS  Article  Google Scholar 

  87. Zhang, N., Zhai, D., Chen, L., Zou, Z., Lin, K., Chang, J.: Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater. Sci. Eng. C. 37, 286–291 (2014)

    CAS  Article  Google Scholar 

  88. Wei, L., Pang, D., He, L., and Deng, C.: Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43, 16141–16148 (201)

  89. Mondal, S., Park, S., Choi, J., Vo, T.M.T., Shin, J.H., Kang, Y.-H., Oh, J.: Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications. Ceram. Int. 46, 29249–29260 (2020)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Firat University (FUBAP) provided funding for this project (Project Numbers: FF.20.22, FF.21.18, and FF.22.05) and derived from Ala Hamd Hssain’s PhD Thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyazi Bulut.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hssain, A.H., Bulut, N., Ates, T. et al. Sr/Smco-doped hydroxyapatites: experimental characterization and theoretical research. J Aust Ceram Soc (2022). https://doi.org/10.1007/s41779-022-00788-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41779-022-00788-1

Keywords

  • Hydroxyapatite
  • DFT calculations
  • Band structure