Skip to main content
Log in

Increased dielectric properties of ZnFe2O4/rGO nanohybrid via thermo-chemical route

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract  

A one-step thermo-chemical approach was employed to synthesize ZnFe2O4/rGO nanohybrids with increasing GO concentrations (0, 10, 20, and 30 wt. %). This approach was used to reduce GO while simultaneously synthesizing ZnFe2O4 nanoparticles and adhering them to rGO sheets. The nanohybrids were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and impedance analyzer. The XRD patterns confirmed the formation of a face-centered cubic single phase of ZnFe2O4/rGO nanohybrid and SEM images revealed the decoration of ZnFe2O4/rGO nanoparticles on rGO sheets. The dielectric properties improved as GO loadings increased. At 100 Hz, the dielectric constant and dielectric loss increased to 2.04 × 104 and 1.20 × 105 for ZnFe2O4/rGO nanohybrid with 30 wt. % of GO when compared to pure ZnFe2O4 of 4.23 × 102 and 1.92 × 103, respectively. The feasibility of this method implies that this nanohybrid can be used for charge storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu, Y., et al.: Nickel ferrite–graphene heteroarchitectures: toward high-performance anode materials for lithium-ion batteries. J. Power Sources 213, 338–342 (2012)

    Article  CAS  Google Scholar 

  2. Ding, Y., Yang, Y., Shao, H.: High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochim. Acta 56(25), 9433–9438 (2011)

    Article  CAS  Google Scholar 

  3. Pham, T.N., Huy, T.Q., Le, A.T.: Spinel ferrite (AFe 2 O 4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv. 10(52), 31622–31661 (2020)

    Article  CAS  Google Scholar 

  4. Xu, S., Huang, A.Q., Burgos, R.: Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power. Electron. 1(3), 186–198 (2013)

    Article  Google Scholar 

  5. Köseoglu, Y., Yıldız, H., Yilgin, R.: Synthesis, characterization and superparamagnetic resonance studies of ZnFe2O4 nanoparticles. J. Nanosci. Nanotechnol. 12(3), 2261–2269 (2012)

    Article  CAS  Google Scholar 

  6. Ünal, B., Baykal, A.: Effect of Zn substitution on electrical properties of nanocrystalline cobalt ferrite. J. Supercond. Novel Magn. 27(2), 469–479 (2013)

    Article  CAS  Google Scholar 

  7. Chen, H., et al.: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20(18), 3557–3561 (2008)

    Article  CAS  Google Scholar 

  8. Bhattacharya, P., et al.: Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4(33), 17039 (2014)

    Article  CAS  Google Scholar 

  9. Rasheed, A., et al.: Zr x Co 0.8−x Ni 0.2−x Fe 2 O 4 -graphene nanocomposite for enhanced structural, dielectric and visible light photocatalytic applications. Ceramics Int. 42(14), 15747–15755 (2016)

  10. Shakir, I., et al.: Magnetically separable and recyclable graphene-MgFe 2 O 4 nanocomposites for enhanced photocatalytic applications. J. Alloy. Compd. 660, 450–455 (2016)

    Article  CAS  Google Scholar 

  11. Zhang, W., et al.: One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material. ACS Appl Mater Interfaces 7(4), 2404–2414 (2015)

    Article  CAS  Google Scholar 

  12. Pramanik, N., et al.: Fabrication of magnetite nanoparticle doped reduced graphene oxide grafted polyhydroxyalkanoate nanocomposites for tissue engineering application. RSC Adv. 6(52), 46116–46133 (2016)

    Article  CAS  Google Scholar 

  13. Khurana, G., et al.: Structural, magnetic, and dielectric properties of graphene oxide/ZnxFe1−xFe2O4 composites. J. Appl. Phys. 117(17), 17E106 (2015)

    Article  CAS  Google Scholar 

  14. Akhavan, O., et al.: Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. J. Mater. Chem. B 2(21), 3306 (2014)

    Article  CAS  Google Scholar 

  15. Fei, P., et al.: One-pot solvothermal synthesized enhanced magnetic zinc ferrite–reduced graphene oxide composite material as adsorbent for methylene blue removal. Mater. Lett. 108, 72–74 (2013)

    Article  CAS  Google Scholar 

  16. Xia, H., et al.: Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries. Solid State Sci. 17, 67–71 (2013)

    Article  CAS  Google Scholar 

  17. Hou, Y., et al.: ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism. Appl. Catal. B 142–143, 80–88 (2013)

    Article  CAS  Google Scholar 

  18. Jumeri, F.A., et al.: Microwave synthesis of magnetically separable ZnFe2O4-reduced graphene oxide for wastewater treatment. Ceram. Int. 40(5), 7057–7065 (2014)

    Article  CAS  Google Scholar 

  19. MA Ge, C.Y., LI LiangChao, JIANG DongHua, ZHU YuMeng, ZHENG TingTing, Preparation and antibacterial property of graphene/zinc ferrite composites. Scientia Sinica Chimica. 44(10), 1544–1552 (2014)

  20. Moradmard, H., et al.: Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloy. Compd. 650, 116–122 (2015)

    Article  CAS  Google Scholar 

  21. Pradeep, A., Priyadharsini, P., Chandrasekaran, G.: Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloy. Compd. 509(9), 3917–3923 (2011)

    Article  CAS  Google Scholar 

  22. Maddahfar, M., M. Ramezani, and S. Mostafa Hosseinpour-Mashkani, Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties. App. Phys. A. 122(8), (2016)

  23. Pei, S., Cheng, H.-M.: The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    Article  CAS  Google Scholar 

  24. Ameer, S., et al.: Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: temperature/microwave magneto-dielectric spectroscopy. Mater. Charact. 99, 254–265 (2015)

    Article  CAS  Google Scholar 

  25. Yang, S., et al.: Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochim. Acta 268, 20–26 (2018)

    Article  CAS  Google Scholar 

  26. Yang, S., et al.: Preparation of defective ZnFe2O4/graphene composites and their charge storage properties. Electrochem. Commun. 92, 19–23 (2018)

    Article  CAS  Google Scholar 

  27. Yang, S., et al.: Electrospun ZnFe2O4/carbon nanofibers as high-rate supercapacitor electrodes. J. Power Sources 469, 228416 (2020)

    Article  CAS  Google Scholar 

  28. Ahmed, I., et al.: Structure–properties relationships of graphene and spinel nickel ferrites based poly (vinylidene fluoride) hybrid polymer nanocomposites for improved dielectric and EMI shielding characteristics. Mater. Res. Bull. 148, 111687 (2022)

    Article  CAS  Google Scholar 

  29. Soomro, S.A., et al.: Improved performance of CuFe2O4/rGO nanohybrid as an anode material for lithium-ion batteries prepared via facile one-step method. Curr. Nanosci. 15(4), 420–429 (2019)

    Article  CAS  Google Scholar 

  30. Stobinski, L., et al.: Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom. 195, 145–154 (2014)

    Article  CAS  Google Scholar 

  31. Huang, X., et al.: Tunable electromagnetic properties and enhanced microwave absorption ability of flaky graphite/cobalt zinc ferrite composites. J. Alloy. Compd. 662, 409–414 (2016)

    Article  CAS  Google Scholar 

  32. Abdullah, N.H., et al.: Isochronal recovery behaviour on electromagnetic properties of polycrystalline nickel zinc ferrite (Ni0. 5Zn0. 5Fe2O4) prepared via mechanical alloying. Sci. Rep. 11(1), 1–11 (2021)

  33. Fu, Y., Wang, X.: Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res. 50(12), 7210–7218 (2011)

    Article  CAS  Google Scholar 

  34. Gordani, G.R., Ghasemi, A., and Saidi, A.: Optimization of carbon nanotube volume percentage for enhancement of high frequency magnetic properties of SrFe8MgCoTi2O19/MWCNTs. J. Magn. Magn. Mater. 363, 49–54 (2014)

  35. Anchieta, C.G., et al.: Effects of solvent diols on the synthesis of ZnFe(2)O(4) particles and their use as heterogeneous photo-Fenton catalysts. Materials (Basel) 7(9), 6281–6290 (2014)

    Article  Google Scholar 

  36. Alam, S.N., Sharma, N., Kumar, L.: Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1), 1–18 (2017)

    Article  CAS  Google Scholar 

  37. Manohar, A., et al.: Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Appl. Phys. A 125(7), 1–10 (2019)

    Article  CAS  Google Scholar 

  38. Zhang, Q., et al.: Synthesis and characterization of carbon nanotubes decorated with manganese–zinc ferrite nanospheres. Mater. Chem. Phys. 116(2–3), 658–662 (2009)

    Article  CAS  Google Scholar 

  39. Lai, Q., et al.: Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2(3), 032146 (2012)

    Article  CAS  Google Scholar 

  40. Singh, J.P., et al.: Optical behaviour of zinc ferrite nanoparticles137–143 (2010)

  41. Meidanchi, A., Akhavan, O.: Superparamagnetic zinc ferrite spinel–graphene nanostructures for fast wastewater purification. Carbon 69, 230–238 (2014)

    Article  CAS  Google Scholar 

  42. Mady, A.H., et al.: Facile microwave-assisted green synthesis of Ag-ZnFe2O4@ rGO nanocomposites for efficient removal of organic dyes under UV-and visible-light irradiation. Appl. Catal. B 203, 416–427 (2017)

    Article  CAS  Google Scholar 

  43. Mondal, R.A., Murty, B.S., Murthy, V.R.K.: Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. Curr. Appl. Phys. 14(12), 1727–1733 (2014)

    Article  Google Scholar 

  44. Rahman, M.T., Vargas, M., Ramana, C.V.: Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J. Alloy. Compd. 617, 547–562 (2014)

    Article  CAS  Google Scholar 

  45. Ameer, S., Maqsood, A.: Powder synthesis and electrical, dielectric spectroscopic characterization of rare earth disilicates (D-Er2Si2O7): Transistor scaling-22nm or beyond. Solid State Commun. 152(19), 1811–1816 (2012)

    Article  CAS  Google Scholar 

  46. Zhou, X.B., et al.: Preparation of nanocrystalline-coated carbon nanotube/Ni0.5Zn0.5Fe2O4 composite with excellent electromagnetic property as microwave absorber. J. Phys. D App. Phys. 46(14), 145002 (2013) 

  47. Ambikeswari, N., Manivannan, S.: Superior magnetodielectric properties of room temperature synthesized superparamagnetic cobalt ferrite–graphene oxide composite. J. Alloy. Compd. 763, 711–718 (2018)

    Article  CAS  Google Scholar 

  48. Sohail, Y., et al.: Impedance spectroscopy and investigation of conduction mechanism in reduced graphene/CuFe2O4 nanocomposites. Appl. Phys. A 127(6), 1–10 (2021)

    Article  CAS  Google Scholar 

  49. Habib, S.A., et al.: Structural, magnetic, and AC measurements of nanoferrites/graphene composites. Nanomaterials 12(6), 931 (2022)

    Article  CAS  Google Scholar 

  50. Sutradhar, S., Bandyopadhyay, A.: Modulation of magnetic and dielectric response of mullite coated Cu-substituted Co-Zn-ferrite multiphase nanocomposites. Mater. Sci. Eng. B 266, 115079 (2021)

    Article  CAS  Google Scholar 

  51. Chinya, I., Sen, S.: Improved dielectric and touch sensing performance of surface modified zinc ferrite (ZF)/polyvinylidene fluoride (PVDF) composite. Sens. Actuators, A 267, 301–309 (2017)

    Article  CAS  Google Scholar 

  52. Prasad, P.D., Hemalatha, J.: Dielectric and energy storage density studies in electrospun fiber mats of polyvinylidene fluoride (PVDF)/zinc ferrite (ZnFe2O4) multiferroic composite. Physica B 573, 1–6 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumair Ahmed Soomro.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseer, H., Soomro, S.A. & Gul, I.H. Increased dielectric properties of ZnFe2O4/rGO nanohybrid via thermo-chemical route. J Aust Ceram Soc 58, 1265–1274 (2022). https://doi.org/10.1007/s41779-022-00769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00769-4

Keywords

Navigation