Skip to main content
Log in

Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The production of porous ceramics for biomedical applications is widely available in the Ceramics industry. In bioceramic applications, interconnected pores are pertinent to increase osteoconductivity and cell proliferation. However, an increase in pore size and the pore amount decrease the mechanical properties. For this reason, pore properties must be precisely controlled. In this study, the effect of a natural pore-forming agent, corn starch addition, and sintering conditions on mechanical properties and biocompatibility was investigated. During mixing, four different starch amounts (1, 3, 5, and 10 wt%) were added to pure beta-tricalcium phosphate (β-TCP) ceramic powders and pressed. Pressed pellets were sintered at 1000, 1100, 1200, and 1300 °C. A scanning electron microscope (SEM) is used to investigate microstructure, texture, pore size, and cell adhesion. The mechanical properties of the β-TCP ceramic parts were further characterized by measuring the density and compressive strength. Cytotoxicity tests were carried out with MTT assays. The optimum mechanical properties were obtained at 1100 °C sintered biocomposites. Although starch starts to burn around 410 °C and analytical results show no presence of starch after the sintering process, biocomposites initially containing 10% starch showed improved cell proliferation. However, a reduction of 59% in compressive strength and a 16% reduction in the density were also recorded. It was observed that 10 wt% starch addition increases cell proliferation by 10% in sintered β-TCP samples. Starch powder additions can be used to increase the cell viability of the material by facilitating the creation of pores, as a low-cost pore-forming agent for porous bone graft and non-load-bearing material in both orthopaedics and maxillofacial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 13(1), 94–117 (1998). https://doi.org/10.1557/JMR.1998.0015

    Article  CAS  Google Scholar 

  2. Eliaz, N., Metoki, N.: Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel). 10(4), 334 (2017). https://doi.org/10.3390/ma10040334

    Article  CAS  Google Scholar 

  3. Agarwalla, A., Puzzitiello, R., Garcia, G.H., Forsythe, B.: Application of a beta-tricalcium phosphate graft to minimize bony defect in bone–patella tendon–bone anterior cruciate ligament reconstruction. Arthrosc. Tech. 7(7), e725–e729 (2018). https://doi.org/10.1016/j.eats.2018.03.009

    Article  Google Scholar 

  4. Roberts, T.T., Rosenbaum, A.J.: Bone grafts, bone substitutes and orthobiologics. Organogenesis. 8(4), 114–124 (2012). https://doi.org/10.4161/org.23306

    Article  Google Scholar 

  5. Liu, B., Lun, D.X.: Current application of β-tricalcium phosphate composites in orthopaedics. Orthop. Surg. 4(3), 139–144 (2012). https://doi.org/10.1111/j.1757-7861.2012.00189.x

    Article  Google Scholar 

  6. Costantino, P.D., et al.: Sphenoethmoid cerebrospinal fluid leak repair with hydroxyapatite cement. Arch. Otolaryngol. Head Neck Surg. 127(5), 588–593 (2001). https://doi.org/10.1001/archotol.127.5.588

    Article  CAS  Google Scholar 

  7. Daculsi, G., Bouler, J.M., Legeros, R.Z.: Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol. 172, 129–191 (1997). https://doi.org/10.1016/s0074-7696(08)62360-8

    Article  CAS  Google Scholar 

  8. Mastalska-Popławska, J., Sikora, M., Izak, P., Góral, Z.: Applications of starch and its derivatives in bioceramics. J. Biomater. Appl. 34(1), 12–24 (2019). https://doi.org/10.1177/0885328219844972

    Article  CAS  Google Scholar 

  9. Horstmann, S.W., Lynch, K.M., Arendt, E.K.: Starch characteristics linked to gluten-free products. Foods. 6(4), 1–21 (2017). https://doi.org/10.3390/foods6040029

    Article  CAS  Google Scholar 

  10. Gregorová, E., Zivcová, Z., Pabst, W.: Starch as a pore-forming and body-forming agent in ceramic technology. Starch/Staerke. 61(9), 495–502 (2009). https://doi.org/10.1002/star.200900138

    Article  CAS  Google Scholar 

  11. Lyckfeldt, O., Ferreira, J.M.F.: Processing of porous ceramics by ‘starch consolidation. J. Eur. Ceram. Soc. 18(2), 131–140 (1998). https://doi.org/10.1016/s0955-2219(97)00101-5

    Article  CAS  Google Scholar 

  12. Taherimehr, M., Bagheri, R., Taherimehr, M.: In-vitro evaluation of thermoplastic starch/beta-tricalcium phosphate nano-biocomposite in bone tissue engineering. Ceram. Int. 47(11), 15458–15463 (2021). https://doi.org/10.1016/j.ceramint.2021.02.111

    Article  CAS  Google Scholar 

  13. Nakahira, A., Honda, Y., Ohta, M.: Preparatıon and evaluatıon of porous β-TCP based composıtes by green process. Phosphorus Res. Bull. 17, 191–196 (2004). https://doi.org/10.3363/prb1992.17.0_191

    Article  CAS  Google Scholar 

  14. Gunduz, O., et al.: Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater. 35, (2014). https://doi.org/10.1016/j.jmbbm.2014.03.004

  15. Bas, M., et al.: Mechanical and biocompatibility properties of calcium phosphate bioceramics derived from salmon fish bone wastes. Int. J. Mol. Sci. 21(21), 1–14 (2020). https://doi.org/10.3390/ijms21218082

    Article  CAS  Google Scholar 

  16. Sader, M.S., Legeros, R.Z., Soares, G.A.: Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J. Mater. Sci. Mater. Med. 20(2), 521–527 (2009). https://doi.org/10.1007/s10856-008-3610-3

    Article  CAS  Google Scholar 

  17. Yetmez, M.: Sintering behavior and mechanical properties of biphasic calcium phosphate ceramics. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/871749

  18. Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwoods, A., Milthomes, B.K.: Sintering effects on the strength of hydroxyapatite. Biomaterials. 16(5), 409–415 (1995)

    Article  CAS  Google Scholar 

  19. Batool, S., Liaqat, U., Hussain, Z., Sohail, M.: Synthesis, characterization and process optimization of bone whitlockite. Nanomaterials. 10(9), 1–14 (2020). https://doi.org/10.3390/nano10091856

    Article  CAS  Google Scholar 

  20. Rangavittal, N., Landa‐Cánovas, A.R., González‐Calbet, J.M., Vallet‐Regi, M.: Structural study and stability of hydroxyapatite and ?-tricalcium phosphate: two important bioceramics. J. Biomed. Mater. Res. 51(4), 660–668 (2000)

    Article  CAS  Google Scholar 

  21. Jarcho, M., Salsbury, R.L., Thomas, M.B., Doremus, R.H.: Synthesis and fabrication of β-tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications. J. Mater. Sci. 14(1), 142–150 (1979). https://doi.org/10.1007/BF01028337

    Article  CAS  Google Scholar 

  22. Lagier, R., Baud, C.A.: Magnesium whitlockite, a calcium phosphate crystal of special interest in pathology. Pathol. Res. Pract. 199(5), 329–335 (2003). https://doi.org/10.1078/0344-0338-00425

    Article  CAS  Google Scholar 

  23. de Oliver Castro, L.: Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral Sci. 21(1), 37–42 (2013). https://doi.org/10.1590/1678-7757201302138

    Article  CAS  Google Scholar 

  24. Gallinetti, S., Canal, C., Ginebra, M.P.: Development and characterization of biphasic hydroxyapatite/β-TCP cements. J. Am. Ceram. Soc. 97(4), 1065–1073 (2014). https://doi.org/10.1111/jace.12861

    Article  CAS  Google Scholar 

  25. Sahin, Y.M., Orman, Z., Yucel, S.: In vitro studies of α-TCP and β-TCP produced from Clinocardium ciliatum seashells. J. Aust. Ceram. Soc. 56(2), 477–488 (2020). https://doi.org/10.1007/s41779-019-00355-1

    Article  CAS  Google Scholar 

  26. Destainville, A., Champion, E., Bernache-Assollant, D., Laborde, E.: Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80(1), 269–277 (2003). https://doi.org/10.1016/S0254-0584(02)00466-2

    Article  CAS  Google Scholar 

  27. Meejoo, S., Maneeprakorn, W., Winotai, P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta. 447(1), 115–120 (2006). https://doi.org/10.1016/j.tca.2006.04.013

    Article  CAS  Google Scholar 

  28. Murphy, C.M., O’Brien, F.J.: Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 4(3), 377–381 (2010). https://doi.org/10.4161/cam.4.3.11747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, Y., Kalkandelen, C., Palaci, Y. et al. Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics. J Aust Ceram Soc 58, 487–494 (2022). https://doi.org/10.1007/s41779-022-00702-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00702-9

Keywords

Navigation