Skip to main content

Advertisement

Log in

Evolution of thermophysical properties of gel-cast SiAlON green bodies in thermal debinding process

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The thermal conduction, thermal expansion, and dynamic thermomechanical behaviors of gel-cast SiAlON green bodies during thermal debinding were systematically studied using thermal analysis methods. The evolution of the thermophysical properties of the green body was revealed. The results showed that residual moisture had a great impact on the deformation of the green body during debinding and may even be greater than the deformation caused by the gel pyrolysis process (2.8% residual moisture). Under the current test conditions, the maximum linear expansion coefficient of the green body was 1.85 × 10−5 °C−1, the thermal diffusivity ranged from 0.21 to 0.46 mm2·s−1, and the specific heat ranged from 0.37 to 0.55 J·(g·K)−1. The storage modulus curve exhibited bimodal distribution with two peak intervals, and the range of values was 35–47 MPa. These results can provide the key thermophysical parameters for the study of the stress and strain behaviors of green bodies during thermal debinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kheirandish, A.R., Nekouee, K.A., Khosroshahi, R.A., Ehsani, N.: Self-propagating high temperature synthesis of SiAlON. Int. J. Refract. Met. Hard Mater. 55, 68–79 (2016). https://doi.org/10.1016/j.ijrmhm.2015.11.010

    Article  CAS  Google Scholar 

  2. Mallik, A.K., CalisAcikbas, N., Kara, F., Mandal, H., Basu, D.: A comparative study of SiAlON ceramics. Ceram. Int. 38, 5757–5767 (2012). https://doi.org/10.1016/j.ceramint.2012.04.022

    Article  CAS  Google Scholar 

  3. Yi, X.M., Zhang, W.G., Akiyama, T.: Thermal conductivity of β-SiAlONs prepared by a combination of combustion synthesis and spark plasma sintering. Thermochim. Acta. 576, 56–59 (2014). https://doi.org/10.1016/j.tca.2013.12.002

    Article  CAS  Google Scholar 

  4. Rueanngoen, A., Imai, M., Yoshida, K., Yano, T.: Recovery behavior of neutron irradiated α- and β-SiAlON ceramics by thermal annealing up to 1473K. J. Nucl. Mater. 437, 235–239 (2013). https://doi.org/10.1016/j.jnucmat.2013.02.023

    Article  CAS  Google Scholar 

  5. Jamshidi, P., Lu, N., Liu, G., Herny, E., Attallah, M.M.: Netshape centrifugal gel-casting of high-temperature sialon ceramics. Ceram. Int. 44, 3440–3447 (2018). https://doi.org/10.1016/j.ceramint.2017.11.143

    Article  CAS  Google Scholar 

  6. Ganesh, I., Sundararajan, G.: Hydrolysis-induced aqueous gelcasting of β-SiAlON-SiO2 ceramic composites: the effect of AlN additive. J. Am. Ceram. Soc. 93, 3180–3189 (2010). https://doi.org/10.1111/j.1551-2916.2010.03885.x

    Article  CAS  Google Scholar 

  7. Liu, G., Attallah, M.M., Loretto, M., Herny, E., Jiang, Y., Button, T.W.: Gel casting of sialon ceramics based on water soluble epoxy resin. Ceram. Int. 41, 11534–11538 (2015). https://doi.org/10.1016/j.ceramint.2015.05.081

    Article  CAS  Google Scholar 

  8. Ganesh, I.: Near-net shape β-Si4Al2O2N6 parts by hydrolysis induced aqueous gelcasting process. Int. J. Appl. Ceram. Tec. 6, 89–101 (2009). https://doi.org/10.1111/j.1744-7402.2008.02258.x

    Article  CAS  Google Scholar 

  9. Wu, Y., Yin, R.M., Xu, K., Li, J.: Fabrication and properties of Sialon ceramics obtained by using a DMAA/MBAM gel system. Ceram. Int. 46, 11667–11674 (2020). https://doi.org/10.1016/j.ceramint.2020.01.197

    Article  CAS  Google Scholar 

  10. Li, J., Zhang, C.F., Yin, R.M., Zhang, W.H.: Preparation and properties of SiAlON ceramics by gel casting and pressureless sintering. Metalurgija. 58, 71–74 (2019)

    CAS  Google Scholar 

  11. Zhang, L.M., Zhang, L., Wang, L.G., Zhou, H.J., Liu, P., Li, Z.H., Huang, Y.: Debinding of gelcasting Al2O3 green body, Rare Met. Mater. Eng. 37, 697–701 (2008)

    Google Scholar 

  12. Wang, K., Qiu, M.B., Jiao, C., Gu, J.J., Xie, D.Q., Wang, C.J., Tang, X.B., Wei, Z., Shen, L.D.: Study on defect-free debinding green body of ceramic formed by DLP technology. Ceram. Int. 46, 2438–2446 (2020). https://doi.org/10.1016/j.ceramint.2019.09.237

    Article  CAS  Google Scholar 

  13. Li, J., Zhang, C.F., Yin, R.M., Zhang, W.H.: DAEM kinetics analysis and finite element simulation of thermal debinding process for a gelcast SiAlON green body. Ceram. Int. 45, 8166–8174 (2019). https://doi.org/10.1016/j.ceramint.2019.01.118

    Article  CAS  Google Scholar 

  14. Wang, H.M., Huang, Z.Y., Deng, J.R., He, D.W., Qi, J.Q., Lu, T.C., Wang, Q.Y.: Stress-strain relationship of translucent nanocrystalline Gadolinium Zirconate ceramic with grain size below 10 nm using nanoindentation. Ceram. Int. 46, 8490–8494 (2020). https://doi.org/10.1016/j.ceramint.2019.12.029

    Article  CAS  Google Scholar 

  15. Kuzin, V.V., Grigor’ev, S.N., Volosova, M.A.: Design of the ceramic-bladed end milling cutters with regard for their stress-strain state for the innovation technological processes. Choice of Ceramics. Part 1. Refract. Ind. Ceram. 59, 558–563 (2019). https://doi.org/10.1007/s11148-019-00272-7

    Article  CAS  Google Scholar 

  16. Li, J., Huang, J.D., Yin, R.M.: Multistage kinetic analysis of DMAA/MBAM polymer removal from gelcast ceramic parts using a multi-stage parallel reaction model and model-free method. RSC Adv. 9, 27305–27317 (2019). https://doi.org/10.1039/C9RA04489B

    Article  CAS  Google Scholar 

  17. He, G.S., Yang, Z.J., Zhou, X.Y., Zhang, J.H., Pan, L.P., Liu, S.J.: Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets. Compos. Sci. Technol. 131, 22–31 (2016). https://doi.org/10.1016/j.compscitech.2016.05.009

    Article  CAS  Google Scholar 

  18. Stasyuk, S.T., Gromovyk, V.I., Bichuya, A.L.: Thermal-stress analysis of hollow cylinder with temperature-dependent thermal conductivity. Strength Mater. 11, 50–52 (1979). https://doi.org/10.1007/BF00806229

    Article  Google Scholar 

  19. Wang, H., Mang, H., Yuan, Y., Pichler, B.L.A.: Multiscale thermoelastic analysis of the thermal expansion coefficient and of microscopic thermal stresses of mature concrete. Materials. 12, 2689 (2019). https://doi.org/10.3390/ma12172689

    Article  CAS  Google Scholar 

  20. ÇalışAçıkbaş, N., Kara, F.: The effect of process conditions on the production of Industrial SiAlON-TiN cutting tools. J. Eng. Sci. Design 6, 716–724 (2018). https://doi.org/10.21923/jesd.448209

    Article  Google Scholar 

  21. ÇalışAçıkbaş, N., Islak, B.Y., Açıkbaş, G.: Effect of TiN particle size on wear behavior of SiAlON-TiN composites. Mater. Test. 62, 1251–1258 (2020). https://doi.org/10.3139/120.111611

    Article  CAS  Google Scholar 

  22. CalisAcikbas, N., Tegmen, S., Ozcan, S., Acikbas, G.: Thermal shock behaviour of α:β-SiAlON–TiN composites. Ceram. Int. 40, 3611–3618 (2014). https://doi.org/10.1016/j.ceramint.2013.09.064

    Article  CAS  Google Scholar 

  23. Xie, H.H., Jiang, J., Yang, X.F., He, Q.L., Zhou, Z., Xu, X.W., Zhang, L.: Theory and practice of rapid and safe thermal debinding in ceramic injection molding. Int. J. Refract. Met. Hard Mater 17, 1098–1107 (2020). https://doi.org/10.1111/ijac.13349

    Article  CAS  Google Scholar 

  24. Yuan, H.Y., Jia, C.C., Zhang, X.X., Bekouche, K., Wang, Z.L.: Thermal degradation mechanism and kinetics of aluminum-copper green bodies prepared by gelcasting. Chin. J. Eng. 38, 102–107 (2016). https://doi.org/10.13374/j.issn2095-9389.2016.01.014

    Article  CAS  Google Scholar 

  25. Li, Y.Q., Qiu, T., Xu, J.: Effect of thermal oxidation treatment in air on the hydrolysis of AlN powder. Mater. Res. Bull. 32, 1173–1179 (1997). https://doi.org/10.1016/S0025-5408(97)00093-7

    Article  CAS  Google Scholar 

  26. CalisAcikbas, N., Kara, F.: The effect of z value on intergranular phase crystallization of αıı-SiAlON-TiN composites. J. Eur. Ceram. Soc. 37, 923–930 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.006

    Article  CAS  Google Scholar 

  27. Özcan, S., Açıkbaş, G., Özbay, N., ÇalışAçıkbaş, N.: The effect of silicon nitride powder characteristics on SiAlON microstructures, densification and phase assemblage. Ceram. Int. 43, 10057–10065 (2017). https://doi.org/10.1016/j.ceramint.2017.05.024

    Article  CAS  Google Scholar 

  28. Li, J., Zhang, C.F., Yin, R.M., Zhang, W.H.: Thermal debinding behavior of a low-toxic DMAA polymer for gelcast ceramic parts based on TG-FTIR and kinetic modeling. RSC Adv. 9, 8415–8425 (2019). https://doi.org/10.1039/c9ra00305c

    Article  CAS  Google Scholar 

  29. Uczak De Goes, W., Somhorst, J., Markocsan, N., Gupta, M., Illkova, K.: Suspension plasma-sprayed thermal barrier coatings for light-duty diesel engines. J. Therm. Spray Techn. 28, 1674–1687 (2019). https://doi.org/10.1007/s11666-019-00923-8

    Article  CAS  Google Scholar 

  30. Stark, W.: Investigation of the curing behaviour of carbon fibre epoxy prepreg by dynamic mechanical analysis DMA. Polym. Test. 32, 231–239 (2013). https://doi.org/10.1016/j.polymertesting.2012.11.004

    Article  CAS  Google Scholar 

  31. Zheng, X.C., Zheng, G.P., Lin, Z., Jiang, Z.Y.: Thermal and dynamic mechanical analyses on Bi0.5Na0.5TiO3–BaTiO3 ceramics synthesized with citrate method. Ceram. Int. 39, 1233–1240 (2013). https://doi.org/10.1016/j.ceramint.2012.07.052

    Article  CAS  Google Scholar 

  32. Khor, K.A., Chia, C.T., Gu, Y.W.: Dynamic mechanical properties of plasma sprayed Ni-based alloys. Mater. Sci. Eng. A. 279, 166–171 (2000). https://doi.org/10.1016/S0921-5093(99)00642-5

    Article  Google Scholar 

  33. Gao, Z.Y., Hu, Q.H.: Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry. J. Geophys. Eng. 10, 25014 (2013). https://doi.org/10.1088/1742-2132/10/2/025014

    Article  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (No. 52004112), the Science and Technology Program of Education Department of Jiangxi Province in China (GJJ170527, GJJ200848), the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology (JXUSTQJYX2020016), and the Scientific Research Foundation of Jiangxi University of Science and Technology (205200100517).

Author information

Authors and Affiliations

Authors

Contributions

Jindi Huang performed the experiment, analyzed and processed the experimental data, wrote the manuscript, and provided part of the financial support; Jing Li designed the experiment, reviewed and edited the manuscript, and provided part of the financial support.

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, J. Evolution of thermophysical properties of gel-cast SiAlON green bodies in thermal debinding process. J Aust Ceram Soc 58, 347–355 (2022). https://doi.org/10.1007/s41779-021-00697-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00697-9

Keywords

Navigation