Skip to main content

Advertisement

Log in

Problems associated with the assessment of organic impurities in bioapatites isolated from animal sources: a review

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This review provides a summary of recent studies that address problems relating to the purity of bioapatites isolated from animal sources. It is essential that the issue of the presence of organic impurities, especially peptides and proteins, following the isolation process be solved with respect to the expansion of the use of xenogeneous bones as a material suitable for the production of artificial replacements. Firstly, the study provides a review of both the various extraction procedures employed for the isolation of bioapatites from animal sources and the characteristics of the extracted bioapatites. Particular attention is devoted to describing individual groups of analytical techniques that serve to prove the presence of proteins and peptides in the isolated apatite phase. Subsequently, an evaluation is provided of the effectivity of the various extraction approaches, which is followed by a discussion of the analytical methods used for the analysis of residual proteins in isolated bioapatites. Further, the factors that are capable of affecting the retention of protein residues in the mineral component are outlined. The final part of the study provides a summary of, and comments on, the required extraction levels and the methodology that is best able to deliver them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B Ben-Nissan 2003 Natural bioceramics: from coral to bone and beyond Curr Opin Solid State Mater Sci 7 283 288 https://doi.org/10.1016/j.cossms.2003.10.001

    Article  CAS  Google Scholar 

  2. TJ Webster C Ergun RH Doremus RW Siegel R Bizios 2000 Enhanced functions of osteoblasts on nanophase ceramics Biomaterials 21 17 1803 1810 https://doi.org/10.1016/S0142-9612(00)00075-2

    Article  CAS  Google Scholar 

  3. M Šupová 2015 Substituted hydroxyapatites for biomedical applications: a review Ceram Int 41 9203 9231 https://doi.org/10.1016/j.ceramint.2015.03.316

    Article  CAS  Google Scholar 

  4. K Dhanaraj C Suresh Kumar SH Socrates J Vinoth Arulraj G Suresh 2021 A comparative analysis of microwave assisted natural (Murex virgineus shell) and chemical nanohydroxyapatite: structural, morphological and biological studies J Austral Ceram Soc 57 1 173 183

    Article  CAS  Google Scholar 

  5. MFMA Zamri R Bahru R Amin MUA Khan SIA Razak SA Hassan MRA Kadir NHM Nayan 2021 Waste to health: a review of waste derived materials for tissue engineering J Clean Prod 290 125792 https://doi.org/10.1016/j.jclepro.2021.125792

    Article  CAS  Google Scholar 

  6. NAS Mohd Pu'ad P Koshy HZ Abdullah 2019 Syntheses of hydroxyapatite from natural sources Heliyon 5 e01588 https://doi.org/10.1016/j.heliyon.2019.e01588

    Article  CAS  Google Scholar 

  7. OS Mahdi 2018 Preparation of hydroxyapatite from natural resources literature review GSJ 6 10 46 52

    Google Scholar 

  8. IO Oladele OG Agbabiaka OG Olasunkanmi 2018 Non-synthetic sources for the development of hydroxyapatite J Appl Biotechnol Bioeng 5 2 88 95 https://doi.org/10.15406/jabb.2018.05.00122

    Article  Google Scholar 

  9. M Šupová 2014 Isolation and preparation of nanoscale bioapatites from natural sources: a review J Nanosci Nanotechnol 14 1 18 https://doi.org/10.1166/jnn.2014.8895

    Article  CAS  Google Scholar 

  10. M Figueiredo A Fernando G Martins 2010 Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone Ceram Int 36 2383 2393 https://doi.org/10.1016/j.ceramint.2010.07.016

    Article  CAS  Google Scholar 

  11. SS Rahavi O Ghaderi A Monshi 2017 A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources Russian J Non-Ferr Met 58 3 276 286 https://doi.org/10.3103/S1067821217030178

    Article  Google Scholar 

  12. M Rana N Akhtar S Rahman 2017 Extraction of hydroxyapatite from bovine and human cortical bone by thermal decomposition and effect of gamma radiation: a comparative study Int J Complement Alt Med 8 3 00263 https://doi.org/10.15406/ijcam.2017.08.00263

    Article  Google Scholar 

  13. G Göller FN Oktar 2002 Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite Mater Lett 56 142 147 https://doi.org/10.1016/S0167-577X(02)00430-5

    Article  Google Scholar 

  14. L Xiaoying F Yongbin G Dachun 2007 Preparation and characterization of natural hydroxyapatite from animal hard tissue Key Eng Mater 342–343 213

    Google Scholar 

  15. M Raspanti S Guizzardi V Pasquale De 1994 Ultrastructure of heat-deproteinated compact bone Biomaterials 15 433 437 https://doi.org/10.1016/0142-9612(94)90222-4

    Article  CAS  Google Scholar 

  16. R Murugan S Ramakrishna RK Panduranga 2006 Nanoporous hydroxy-carbonate apatite scaffold made of natural bone Mater Lett 60 2844 2847 https://doi.org/10.1016/j.matlet.2006.01.104

    Article  CAS  Google Scholar 

  17. T Šmrhová P Junková S Kučková 2020 Peptide mass mapping in bioapatites isolated from animal bones J Mater Sci Mater Med 31 32 https://doi.org/10.1007/s10856-020-06371-z

    Article  CAS  Google Scholar 

  18. HM Kim C Rey MJ Glimcher 1995 Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature J Bone Miner Res 10 1589 1601 https://doi.org/10.1002/jbmr.5650101021

    Article  CAS  Google Scholar 

  19. SJ Eppell W Tong JL Katz 2001 Shape and size of isolated bone mineralites measured using atomic force microscopy J Ortop Res 19 1027 1034 https://doi.org/10.1016/S0736-0266(01)00034-1

    Article  CAS  Google Scholar 

  20. Lin FH, Liao CJ, Chen KS, et al. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O· 10H2O addition. Biomaterials 1999, 20: 475-484. https://doi.org/10.1016/S0142-9612(98)00193-8.

  21. A Ruksudjarit K Pengpat G Rujijanagul 2008 Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone Curr Appl Phys 8 270 272 https://doi.org/10.1016/j.cap.2007.10.076

    Article  Google Scholar 

  22. SI Roohani Esfahani F Tavangarian R Emadi 2008 Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement Mater Lett 62 3428 3430 https://doi.org/10.1016/j.matlet.2008.02.06

    Article  CAS  Google Scholar 

  23. R Emadi F Tavangarian SI Roohani Esfahani 2010 Biodegradable and bioactive properties of a novel bone scaffold coated with nanocrystalline bioactive glass for bone tissue engineering Mater Lett 64 1528 1531 https://doi.org/10.1016/j.matlet.2010.04.011

    Article  CAS  Google Scholar 

  24. A Doostmohammadi A Monshi MH Fathi 2011 A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite Ceram Inter 37 1601 1607 https://doi.org/10.1016/j.ceramint.2011.03.009

    Article  CAS  Google Scholar 

  25. A Doostmohammadi A Monshi MH Fathi 2011 A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite Ceram Int 37 1601 1607 https://doi.org/10.1016/j.ceramint.2011.03.009

    Article  CAS  Google Scholar 

  26. MR Ayatollahi MY Yahya H Asgharzadeh Shirazi 2015 Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler Ceram Intern 41 10818 10827 https://doi.org/10.1016/j.ceramint.2015.05.021

    Article  CAS  Google Scholar 

  27. M Yetmez ZE Erkmen C Kalkandelen 2017 Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite Mater Sci Eng C 77 470 475 https://doi.org/10.1016/j.msec.2017.03.290

    Article  CAS  Google Scholar 

  28. M Šupová T Suchý Z Sucharda 2019 The comprehensive in vitro evaluation of eight different calcium phosphates: significant parameters for cell behavior J Amer Ceram Soc 102 2882 2904 https://doi.org/10.1111/jace.16110

    Article  CAS  Google Scholar 

  29. NAM Barakat KA Khalil FA Sheikh 2008 Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable Hap Mater Sci Eng C 28 1381 1387 https://doi.org/10.1016/j.msec.2008.03.003

    Article  CAS  Google Scholar 

  30. NAM Barakat SM Khil AM Omran 2009 Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods J Mater Process Technol 209 3408 3415 https://doi.org/10.1016/j.jmatprotec.2008.07.040

    Article  CAS  Google Scholar 

  31. S Patel J Han W Qiu 2015 Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application J Environ Chem Eng 3 2368 2377 https://doi.org/10.1016/j.jece.2015.07.031

    Article  CAS  Google Scholar 

  32. CY Ooi M Hamdi S Ramesh 2007 Properties of hydroxyapatite produced by annealing of bovine bone Ceram Int 33 1171 1177 https://doi.org/10.1016/j.ceramint.2006.04.001

    Article  CAS  Google Scholar 

  33. CP Yoganand V Selvarajan OM Goudouri 2011 Preparation of bovine hydroxyapatite by transferred arc plasma Curr Appl Phys 11 702 709 https://doi.org/10.1016/j.cap.2010.11.035

    Article  Google Scholar 

  34. JL Manalu B Soegijono DJ Indrani 2015 Characterization of hydroxyapatite derived from bovine bone Asian J Appl Sci 3 4 758 765

    Google Scholar 

  35. Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater, 2019, 1-7, https://doi.org/10.1177/2280800019836829

  36. NA Khan M Ahmed NH Syed 2020 Effect of Ca (OH)2 and heat treatment on the physico-chemical properties of bovine bone powder; a material useful for medical, catalytic, and environmental applications Mater Sci 26 1 114 119 https://doi.org/10.5755/j01.ms.26.1.21219

    Article  Google Scholar 

  37. K Haberko M Bućko M Haberko 2003 Natural hydroxyapatite – preparation, properties Eng Biomater 30–33 32 37

    Google Scholar 

  38. A Niakan S Ramesh P Ganesan 2015 Sintering behaviour of natural porous hydroxyapatite derived from bovine bone Ceram Int 41 3024 3029 https://doi.org/10.1016/j.ceramint.2014.10.138

    Article  CAS  Google Scholar 

  39. J Brzezińska-Miecznik K Haberko M Sitarz 2015 Hydroxyapatite from animal bones – extraction and properties Ceram Int 41 4841 4846 https://doi.org/10.1016/j.ceramint.2014.12.041

    Article  CAS  Google Scholar 

  40. RX Sun Y Lv YR Niu 2017 Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders Ceram Inter 43 16792 16798 https://doi.org/10.1016/j.ceramint.2017.09.075

    Article  CAS  Google Scholar 

  41. NH Adenan I Zainol NA Rahim 2018 Extraction of nanohydroxyapatite from waste bovine bone using alkaline digestion method J Phys: Conf Ser 1082 012005 https://doi.org/10.1088/1742-6596/1082/1/012005

    Article  CAS  Google Scholar 

  42. R Murugan TS Sampath Kumar RK Panduranga 2002 Fluorinated bovine hydroxyapatite: preparation and characterization Mater Lett 57 429 433 https://doi.org/10.1016/S0167-577X(02)00805-4

    Article  CAS  Google Scholar 

  43. R Emadi SI Roohani Esfahani F Tavangarian 2010 A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone Mater Lett 64 993 996 https://doi.org/10.1016/j.matlet.2010.01.085

    Article  CAS  Google Scholar 

  44. R Murugan K Panduranga Rao TS Sampath Kumar 2003 Heat-deproteinated xenogeneic bone from slaughterhouse waste: physico-chemical properties Bull Mater Sci 26 523 528 https://doi.org/10.1007/BF02707351

    Article  CAS  Google Scholar 

  45. MM Rana N Akhtar MS Rahman 2017 Extraction and characterization of hydroxyapatite from bovine cortical bone and effect of radiatio Inter J Biosci 3 20 30 https://doi.org/10.12692/ijb/11.3.20-30

    Article  CAS  Google Scholar 

  46. AM Sofronia R Baies EM Anghel 2014 Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite Mater Sci Eng C 43 153 163 https://doi.org/10.1016/j.msec.2014.07.023

    Article  CAS  Google Scholar 

  47. SM Londoñ-Restrepo CF Ramirez-Gutierrez A Real del 2016 Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air J Mater Sci 51 4431 4441 https://doi.org/10.1007/s10853-016-9755-4

    Article  CAS  Google Scholar 

  48. W Khoo FM Nor H Ardhyananta 2015 Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures Proc Manuf 2 196 201 https://doi.org/10.1016/j.promfg.2015.07.034

    Article  Google Scholar 

  49. E Hosseinzadeh M Davarpanah N Hassanzadeh Nemati 2014 Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method Int J Org Transplant Med 5 1 23 31

    CAS  Google Scholar 

  50. MK Herliansyah DA Nasution M Hamdi 2007 Preparation and characterization of natural hydroxyapatite: a comparative study of bovine bone hydroxyapatite and hydroxyapatite from calcite Mater Sci Forum 1441 561 565 https://doi.org/10.4028/www.scientific.net/MSF.561-565.1441

    Article  Google Scholar 

  51. S Dimović I Smičiklas I Plećaš 2009 Comparative study of differently treated animal bones for Co2+ removal J Hazard Mater 164 279 287 https://doi.org/10.1016/j.jhazmat.2008.08.013

    Article  CAS  Google Scholar 

  52. ME Bahrololoom M Javidi S Javadpour 2009 Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash J Ceram Proces Res 10 2 129 138

    Google Scholar 

  53. M Younesi S Javadpour ME Bahrololoom 2011 Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash J Mater Engin Perform 20 8 1484 1490 https://doi.org/10.1007/s11665-010-9785-z

    Article  CAS  Google Scholar 

  54. MK Herliansyah M Hamdi A Ide-Ektessabi 2009 The influence of sintering temperature on the properties of compacted bovine hydroxyapatite Mater Sci Eng C 29 1674 1680 https://doi.org/10.1016/j.msec.2009.01.007

    Article  CAS  Google Scholar 

  55. Toibah AR, Misran F, Mustafa Z, et al. Calcium phosphate from waste animal bones: phase identification analysis. J Adv Manuf Tech 2018, 12.1 (3): 99-110.

  56. OS Mahdi 2017 Preparation and characterization of hydroxyapatite from bovine teeth Adv Nat Appl Sci 11 623 630

    CAS  Google Scholar 

  57. M Lombardi P Palmero K Haberko 2011 Processing of a natural hydroxyapatite powder: From powder optimization to porous bodies development J Eur Ceram Soc 31 2513 2518 https://doi.org/10.1016/j.jeurceramsoc.2011.02.017

    Article  CAS  Google Scholar 

  58. PAF Sossa BS Giraldo BCG Garcia 2018 Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties Matéria 4 e12217 https://doi.org/10.1590/S1517-707620180004.0551

    Article  Google Scholar 

  59. AM Janus M Faryna K Haberko 2008 Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones Microchim Acta 161 3 349 353 https://doi.org/10.1007/s00604-007-0864-2

    Article  CAS  Google Scholar 

  60. K Haberko MM Bućko W Mozgawa 2009 Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres Ceram Int 35 2537 2540 https://doi.org/10.1016/j.ceramint.2009.02.008

    Article  CAS  Google Scholar 

  61. Sobczak-Kupiec A, Malina D, Pia̧tkowski M, et al. Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. J Nanosci Nanotechnol 2012, 12: 9302-9311. https://doi.org/10.1166/jnn.2012.6756.

  62. U Iriarte-Velasco JL Ayastuy L Zudaire 2014 An insight into the reactions occurring during the chemical activation of bone char Chem Engin J 251 217 227 https://doi.org/10.1016/j.cej.2014.04.048

    Article  CAS  Google Scholar 

  63. MP Ramírez Fernández SA Gehrke CPA Martinez 2017 SEM-EDX study of the degradation process of two xenograft materials used in sinus lift procedures Materials 10 5 542 https://doi.org/10.3390/ma10050542

    Article  CAS  Google Scholar 

  64. K Haberko MM Bućko J Brzezińska-Miecznik 2006 Natural hydroxyapatite—its behaviour during heat treatment J Eur Ceram Soc 26 537 542 https://doi.org/10.1016/j.jeurceramsoc.2005.07.033

    Article  CAS  Google Scholar 

  65. EA Ofudje A Rajendran AI Adeogun 2018 Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications Adv Powder Technol 29 1 8 https://doi.org/10.1016/j.apt.2017.09.008

    Article  CAS  Google Scholar 

  66. A Sobczak A Kida Z Kowalski 2009 Evaluation of the biomedical properties of hydroxyapatite obtained from bone waste Pol J Chem Technol 11 37 43 https://doi.org/10.2478/v10026-009-0010-5

    Article  Google Scholar 

  67. A Sobczak-Kupiec Z Wzorek 2012 The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite Ceram Int 38 641 647 https://doi.org/10.1016/j.ceramint.2011.06.065

    Article  CAS  Google Scholar 

  68. S Guizzardi C Montanari S Migliaccio 2000 Qualitative assessment of natural apatite in vitro and in vivo J Biomed Mater Res B 53 227 234 https://doi.org/10.1002/(SICI)1097-4636(2000)53:3<227::AID-JBM7>3.0.CO;2-E

  69. Pawar S, Theodore T. Development of hydroxyapatite from waste mutton bones and its application for hexavalent chromium removal from aqueous solutions-Adsorption isotherms and kinetics study. In: AIP Conference Proceedings. AIP Publishing LLC, 2020. p. 030001., https://doi.org/10.1063/5.0022839

  70. JC Hiller TJU Thompson MP Evison 2003 Bone mineral change during experimental heating: an X-ray scattering investigation Biomaterials 24 28 5091 5097 https://doi.org/10.1016/S0142-9612(03)00427-7

    Article  CAS  Google Scholar 

  71. HL Jaber AS Hammood N Parvin 2018 Characterization of hydroxyapatite powder from natural camelus bone J Austral Ceram Soc 54 1 1 10 https://doi.org/10.1007/s41779-017-0120-0

    Article  CAS  Google Scholar 

  72. JD Termine ED Eanes DJ Greenfield 1973 Hydrazine-deproteinated bone mineral Physical and chemical properties Calc Tiss Res 12 73 90 https://doi.org/10.1007/BF02013723

    Article  CAS  Google Scholar 

  73. A Bigi G Cojazzi S Panzavolta 1997 Chemical and structural characterization of the mineral phase from cortical and trabecular bone J Inorg Biochem 68 45 51 https://doi.org/10.1016/S0162-0134(97)00007-X

    Article  CAS  Google Scholar 

  74. OH Lowry NJ Rosebrough AL Farr 1951 Protein measurement with the folin phenol reagent J Biol Chem 193 265 275

    Article  CAS  Google Scholar 

  75. KP Malla S Regmi A Nepal 2020 Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone Inter J Biomater 1690178 10 https://doi.org/10.1155/2020/1690178

    Article  CAS  Google Scholar 

  76. F Sharifianjazi A Esmaeilkhanian M Moradi A Pakseresht MS Asl H Karimi-Maleh HW Jang M Shokouhimehr RS Varma 2021 Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering Mat Sci Eng B 264 114950 https://doi.org/10.1016/j.mseb.2020.114950

    Article  CAS  Google Scholar 

  77. M Šupová GS Martynková Z Sucharda 2011 Bioapatite made from chicken femur bone Ceram-Silikaty 55 256 260

    Google Scholar 

  78. R Rajesh A Hariharasubramanian YD Ravichandran 2012 Chicken bone as a bioresource for the bioceramic (hydroxyapatite) Phosphorus Sulfur Silicon 187 914 925 https://doi.org/10.1080/10426507.2011.650806

    Article  CAS  Google Scholar 

  79. AZ Alshemary A Muhammad A Taha 2018 Physico-chemical and biological properties of hydroxyapatite extracted from chicken beaks Mater Let 215 169 172 https://doi.org/10.1016/j.matlet.2017.12.076

    Article  CAS  Google Scholar 

  80. J Venkatesan SK Kim 2010 Effect of temperature on isolation and characterization of hydroxyapatite from Tuna (Thunnus obesus) bone Materials 3 4761 4772 https://doi.org/10.3390/ma3104761

    Article  CAS  Google Scholar 

  81. R Pallela J Venkatesan SK Kim 2011 Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone Ceram Int 37 3489 3497 https://doi.org/10.1016/j.ceramint.2011.06.004

    Article  CAS  Google Scholar 

  82. J Venkatesan ZJ Qian B Ryu 2011 A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone Biomed Mater 6 035003 https://doi.org/10.1088/1748-6041/6/3/035003

    Article  CAS  Google Scholar 

  83. J Venkatesan B Lowe P Manivasagan 2015 Isolation and characterization of nano-hydroxyapatite from salmon fish bone Materials 8 5426 5439 https://doi.org/10.3390/ma8085253

    Article  CAS  Google Scholar 

  84. TM Coelho ES Nogueira A Steimacher 2006 Characterization of nanostructured hydroxyapatite obtained from the bones of Brazilian river fish J Appl Phys 100 094312 https://doi.org/10.1063/1.2369647

    Article  CAS  Google Scholar 

  85. TM Coelho ES Nogueira WR Weinand 2007 Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste J Appl Phys 101 084701 https://doi.org/10.1063/1.2718866

    Article  CAS  Google Scholar 

  86. B Ratna Sunil M Jagannatham 2016 Producing hydroxyapatite from fish bones by heat treatment Mater Lett 185 411 414 https://doi.org/10.1016/j.matlet.2016.09.039

    Article  CAS  Google Scholar 

  87. A Cahyanto E Kosasih D Aripin 2017 Fabrication of hydroxyapatite from fish bones waste using reflux method IOP Conf. Series: Mater Sci Eng 172 012006 https://doi.org/10.1088/1757-899X/172/1/012006

    Article  Google Scholar 

  88. M Ozawa S Suzuki 2002 Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment J Am Ceram Soc 85 1315 1317 https://doi.org/10.1111/j.1151-2916.2002.tb00268.x

    Article  CAS  Google Scholar 

  89. M Boutinguiza J Pou R Comesaña 2012 Biological hydroxyapatite obtained from fish bones Mat Sci Eng C 32 478 486 https://doi.org/10.1016/j.msec.2011.11.021

    Article  CAS  Google Scholar 

  90. A Pa S Paul AR Choudhury 2017 Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications Mater Lett 203 89 92 https://doi.org/10.1016/j.matlet.2017.05.103

    Article  CAS  Google Scholar 

  91. C Piccirillo MF Silva RC Pullar 2013 Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones Mater Sci Eng C 33 1 103 110 https://doi.org/10.1016/j.msec.2012.08.014

    Article  CAS  Google Scholar 

  92. C Piccirillo RC Pullar DM Tobaldi 2014 Hydroxyapatite and chloroapatite derived from sardine by-products Ceram Int 40 13231 13240 https://doi.org/10.1016/j.ceramint.2014.05.030

    Article  CAS  Google Scholar 

  93. HB Modolon J Inocente AM Bernardin ORK Montedo S Arcaro 2021 Nanostructured biological hydroxyapatite from Tilapia bone: a pathway to control crystallite size and crystallinity Ceram Inter 47 27685 27693 https://doi.org/10.1016/j.ceramint.2021.06.193

    Article  CAS  Google Scholar 

  94. S Mondal S Mahata S Kundu 2010 Processing of natural resourced hydroxyapatite ceramics from fish scale Adv Appl Ceram 109 234 239 https://doi.org/10.1179/174367509X12581069052090

    Article  Google Scholar 

  95. S Kongsri K Janpradit K Buapa 2013 Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution Chem Eng J 215–216 522 532 https://doi.org/10.1016/j.cej.2012.11.054

    Article  CAS  Google Scholar 

  96. NN Panda K Pramanik LB Sukla 2014 Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold Bioprocess Biosyst Eng 37 3 433 440 https://doi.org/10.1007/s00449-013-1009-0

    Article  CAS  Google Scholar 

  97. W Pon-On P Suntornsaratoon N Charoenphandhu 2016 Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative materiál Mater Sci Eng C 62 183 189 https://doi.org/10.1016/j.msec.2016.01.051

    Article  CAS  Google Scholar 

  98. Y Alparslan T Baygar T Baygar 2017 Extraction, characterization and antimicrobial activity of hydroxyapatite from seabass and seabream scale J Food Health Sci 3 3 90 96 https://doi.org/10.3153/JFHS17012

    Article  Google Scholar 

  99. dos Santos Horta MK, Moura FJ, Aguilar MS, Westin CB, Navarro da Rocha D, Brant de Campos J. In vitro evaluation of natural hydroxyapatite from Osteoglossum bicirrhosum fish scales for biomedical application. Int J Appl Ceram Technol, 2021.https://doi.org/10.1111/ijac.13846

  100. B Mondal S Mondal A Mondal 2016 Fish scale derived hydroxyapatite scaffold for bone tissue engineering Mater Charact 121 112 124 https://doi.org/10.1016/j.matchar.2016.09.034

    Article  CAS  Google Scholar 

  101. YC Huang PC Hsiao HJ Chai 2011 Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells Ceram Int 37 1825 1831 https://doi.org/10.1016/j.ceramint.2011.01.018

    Article  CAS  Google Scholar 

  102. N Muhammad Y Gao F Iqbal 2016 Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment Separ Purif Techn 161 129 135 https://doi.org/10.1016/j.seppur.2016.01.047

    Article  CAS  Google Scholar 

  103. S Paul A Pal AR Choudhury 2017 Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity Ceram Inter 43 15678 15684 https://doi.org/10.1016/j.ceramint.2017.08.127

    Article  CAS  Google Scholar 

  104. M López-Álvarez S Pérez-Davila C Rodríguez-Valencia 2016 The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts Biomed Mater 11 3 035011 https://doi.org/10.1088/1748-6041/11/3/035011

    Article  CAS  Google Scholar 

  105. M López-Álvarez E Vigo C Rodríguez-Valencia 2017 In vivo evaluation of shark teeth derived bioapatites Clin Oral Impl Res 28 9 e91 e100 https://doi.org/10.1111/clr.12934

    Article  Google Scholar 

  106. M García-González FM Muñoz Guzón A González-Cantalapiedra 2020 Application of shark teeth–derived bioapatites as a bone substitute in veterinary orthopedics. preliminary clinical trial in dogs and cats Front Veter Sci 7 574017 https://doi.org/10.3389/fvets.2020.574017

    Article  Google Scholar 

  107. SA Doğdu C Turan T Depci D Ayas 2021 Natural hydroxyapatite obtained from pufferfish teeth for potential dental application J Ceram Proces Res 22 3 356 361 https://doi.org/10.36410/jcpr.2021.22.3.356

    Article  Google Scholar 

  108. B Wenz B Oesch M Horst 2001 Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone Biomaterials 22 1599 1606 https://doi.org/10.1016/S0142-9612(00)00312-4

    Article  CAS  Google Scholar 

  109. Y Kim H Nowzari SK Rich 2013 Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review Clin Implant Dent Relat Res 15 5 645 653 https://doi.org/10.1111/j.1708-8208.2011.00407.x

    Article  Google Scholar 

  110. Y Kim AE Rodriguez H Nowzari 2016 The risk of prion infection through bovine grafting Mater Clin Impl Dent Rel Res 18 6 1095 1102 https://doi.org/10.1111/cid.12391

    Article  Google Scholar 

  111. Taylor DM, Grobben AH, Steele PJ. Preliminary data on the inactivation of TSE agents by a short NaOH treatmentin the acid bone gelatin manufacturing proces. A report to the EC Scientific Steering Committee, 2001.

  112. DM Taylor H Fraser I McConnell 1994 Decontamination studies with the agents of bovine spongiform encephalopathy and scrapie Arch virol 139 3–4 313 326 https://doi.org/10.1007/BF01310794

    Article  CAS  Google Scholar 

  113. D Taylor 2002 Inactivation of the BSE agent C. R. Biologies 325 1 75 76 https://doi.org/10.1016/S1631-0691(02)01386-0

    Article  CAS  Google Scholar 

  114. S Alan MS Walker B Clark 1983 Conditions for the chemical and physical inactivation of the K. Fu. strain of the agent of Creutzfeldt-Jakob disease Am J Public Health 73 661 665

    Article  Google Scholar 

  115. Berberi A, Samarani A, Nader N, et al. Physicochemical characteristics of bone substitutes used in oral surgery in comparison to autogenous bone, BioMed Res Inter, 2014, Article ID 320790, 9 pages. https://doi.org/10.1155/2014/320790.

  116. ZP Kačarević F Kavehei A Houshmand 2018 Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration Int J Artif Org 41 11 789 800 https://doi.org/10.1177/0391398818771530

    Article  CAS  Google Scholar 

  117. M Barbeck R Unger F Witte 2017 Xenogeneic bone grafting materials. Implants 3 34 36

    Google Scholar 

  118. M Barbeck S Udeabor J Lorenz 2015 High-temperature sintering of xenogeneic bone substitutes leads to increased multinucleated giant cell formation: in vivo and preliminary clinical results J Oral Impl 41 5 e212 e222 https://doi.org/10.1563/aaid-joi-D-14-00168

    Article  Google Scholar 

  119. S Joschek B Nies R Krotz 2000 Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone Biomaterials 21 16 1645 1658 https://doi.org/10.1016/S0142-9612(00)00036-3

    Article  CAS  Google Scholar 

  120. JW Park JH Jang SR Bae 2009 Bone formation with various bone graft substitutes in critical-sized rat calvarial defect Clin Oral Implants Res 20 4 372 378 https://doi.org/10.1111/j.1600-0501.2008.01602.x

    Article  Google Scholar 

  121. JW Park HJ Ko JH Jang 2012 Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects J Biomed Mater Res A 100 4 834 840 https://doi.org/10.1002/jbm.a.34017

    Article  CAS  Google Scholar 

  122. MR Oliveira A Silva de S Ferreira 2015 Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats Int J Oral Maxillofac Surg 44 5 649 655 https://doi.org/10.1016/j.ijom.2014.12.005

    Article  CAS  Google Scholar 

  123. J Mah J Hung J Wang 2004 The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects Europ J Orthod 26 5 475 482 https://doi.org/10.1093/ejo/26.5.475

    Article  Google Scholar 

  124. T Accorsi-Mendonça MB Conz TC Barros 2008 Physicochemical characterization of two deproteinized bovine xenografts Braz Oral Res 22 1 5 10 https://doi.org/10.1590/s1806-83242008000100002

    Article  Google Scholar 

  125. M Figueiredo J Henriques G Martins 2010 Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes—comparison with human bone J Biomed Mater Res B 92 409 419 https://doi.org/10.1002/jbm.b.31529

    Article  CAS  Google Scholar 

  126. JW Park ES Kim JH Jang 2010 Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure Clin Oral Implants Res 21 3 268 276 https://doi.org/10.1111/j.1600-0501.2009.01846.x

    Article  Google Scholar 

  127. J Śmieszek-Wilczewska R Koszowski J Pająk 2010 Comparison of postoperation bone defects healing of alveolar processes of maxila and mandible with the use of Bio-Gen and Bio-Oss J Clin Exp Dent 2 2 62 68 https://doi.org/10.4317/JCED.2.E60

    Article  Google Scholar 

  128. AR Rokn MA Khodadoostan AARR Ghahroudi 2011 Bone formation with two types of grafting materials: a histologic and histomorphometric study Open Dent J 511 1 96 104 https://doi.org/10.2174/1874210601105010096

    Article  Google Scholar 

  129. R Manfro FS Fonseca MC Bortoluzzi 2014 Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: bio-oss, bone-fill and gen-ox anorganic J Maxillofac Oral Surg 13 4 464 470 https://doi.org/10.1007/s12663-013-0554-z

    Article  Google Scholar 

  130. CAY Takauti F Futema RB Brito de 2014 Assessment of bone healing in rabbit calvaria grafted with three different biomaterials Braz Dent J 25 5 379 384 https://doi.org/10.1590/0103-6440201302383

    Article  Google Scholar 

  131. CR Dumitrescu IA Neacsu VA Surdu AI Nicoara F Iordache R Trusca LT Ciocan A Ficai E Andronescu 2021 Nano-hydroxyapatite vs. xenografts: synthesis, characterization, and in vitro behavior Nanomaterials 11 2289 https://doi.org/10.3390/nano11092289

    Article  CAS  Google Scholar 

  132. B Oliveira de WG Assunção JN Zanoni 2015 Evaluation of biomaterials with and without platelet-rich plasma: a histometric study using beagle dogs Braz J Oral Sci 14 4 306 310 https://doi.org/10.1590/1677-3225v14n4a10

    Article  Google Scholar 

  133. AE Rodriguez H Nowzari 2019 The long-term risks and complications of bovine-derived xenografts: a case series J Indian Soc Periodontol 23 487 492 https://doi.org/10.4103/jisp.jisp_656_18

    Article  Google Scholar 

  134. D Tadic M Epple 2004 A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone Biomaterials 25 987 994 https://doi.org/10.1016/S0142-9612(03)00621-5

    Article  CAS  Google Scholar 

  135. SE Etok E Valsami-Jones TJ Wess 2007 Structural and chemical changes of thermally treated bone apatite J Mater Sci 42 9807 9816 https://doi.org/10.1007/s10853-007-1993-z

    Article  CAS  Google Scholar 

  136. F Peters K Schwarz M Epple 2000 The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis Thermochim Acta 361 131 138 https://doi.org/10.1016/S0040-6031(00)00554-2

    Article  CAS  Google Scholar 

  137. M Buckley M Collins J Thomas-Oates 2009 Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry Rapid Commun Mass Spectrom 23 3843 3854 https://doi.org/10.1002/rcm.4316

    Article  CAS  Google Scholar 

  138. M Buckley M Collins J Thomas-Oates 2008 A method of isolating the collagen (I) a2 chain carboxytelopeptide for species identification in bone fragments Analyt Biochem 374 325 334 https://doi.org/10.1016/j.ab.2007.12.002

    Article  CAS  Google Scholar 

  139. C Wadsworth M Buckley 2018 Characterization of proteomes extracted through collagen-based stable isotope and radiocarbon dating methods J Proteome Res 17 429 439 https://doi.org/10.1021/acs.jproteome.7b00624

    Article  CAS  Google Scholar 

  140. M Buckley 2016 Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and lc-based proteomics methods Int J Mol Sci 17 445 461 https://doi.org/10.3390/ijms17040445

    Article  CAS  Google Scholar 

  141. Nikolov M, Schmidt C, Urlaub H. Quantitative mass spectrometry-based proteomics: an overview. In Quantitative Methods in Proteomics. Methods in Molecular Biology (Methods and Protocols). Marcus K, Eds. Humana Press, Totowa, NJ, 2012: 893.

  142. E Landi A Tampieri G Celotti 2004 Influence of synthesis and sintering parameters on the characteristics of carbonate apatite Biomaterials 2004 25 1763 1770 https://doi.org/10.1016/j.biomaterials.2003.08.026

    Article  CAS  Google Scholar 

  143. JD Pasteris B Wopenka JJ Freeman 2004 Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials Biomaterials 25 229 238 https://doi.org/10.1016/S0142-9612(03)00487-3

    Article  CAS  Google Scholar 

  144. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR, 2017 EAG, INC, REV, 11.16.18. https://www.eag.com/techniques/spectroscopy/fourier-transform-infrared-spectroscopy-ftir/

  145. FA Shah K Ruscsák A Palmquist 2019 50 years of scanning electron microscopy of bone—acomprehensive overview of the important discoveries madeand insights gained into bone material properties in health, disease, and taphonomy Bone Res 7 15 https://doi.org/10.1038/s41413-019-0053-z

    Article  CAS  Google Scholar 

  146. W Traub T Arad S Weiner 1992 Growth of mineral crystals in turkey tendon collagen fibers Conn Tissue Res 28 99 111 https://doi.org/10.3109/03008209209014230

    Article  CAS  Google Scholar 

  147. FL Lozano MA Peňa-Rico A Heredia 2003 Thermal analysis study of human bone J Mater Sci 38 4777 4782 https://doi.org/10.1023/A:1027483220584

    Article  CAS  Google Scholar 

  148. PL Kronick P Cooke 1996 Thermal Stabilization of Collagen Fibers by Calcification Connect Tissue Res 33 275 282 https://doi.org/10.3109/03008209609028885

    Article  CAS  Google Scholar 

  149. Krane SM, Glimcher MJ. Studies of the interaction of collagen and phosphate. In Radioisotope and Bone. LaCroix P, Budy AM, Eds. Blackwell, Oxford, England, 1962, p. 419.

  150. H Develioğlu SU Saraydın Z Akkus 2015 Long-term assessment of bone formation in response to Gen Os and Gel 40 xenografts in an experimental rat model Biomed Res 26 4 666 671

    Google Scholar 

  151. PFE Bernabé LGN Melo LTA Cintra 2012 Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae Clin Oral Impl Res 23 384 388 https://doi.org/10.1111/j.1600-0501.2011.02166.x

    Article  Google Scholar 

  152. SK Kim PJ Park YT Kim 2001 Study on acute subcutaneous toxicity of hydroxyapatite sinter produced from tuna bone in Sprague—Dawly rats Korean J Life Sci 11 97 102

    Google Scholar 

Download references

Acknowledgements

Special thanks go to Mr. Darren Ireland for the English language correction of the paper.

Funding

I gratefully acknowledge the financial support provided for this study by the Long-term Conceptual Development Research Organisation under project no. RVO: 67985891.

Author information

Authors and Affiliations

Authors

Contributions

Writing, review and editing: M.S.; unpublished results of own research are summarized in Figs. 1 and 2 and in Tables 3 and 4, other information in the text come from literary research.

Corresponding author

Correspondence to Monika Šupová.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šupová, M. Problems associated with the assessment of organic impurities in bioapatites isolated from animal sources: a review. J Aust Ceram Soc 58, 227–247 (2022). https://doi.org/10.1007/s41779-021-00678-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00678-y

Keywords

Navigation