Abstract
This review provides a summary of recent studies that address problems relating to the purity of bioapatites isolated from animal sources. It is essential that the issue of the presence of organic impurities, especially peptides and proteins, following the isolation process be solved with respect to the expansion of the use of xenogeneous bones as a material suitable for the production of artificial replacements. Firstly, the study provides a review of both the various extraction procedures employed for the isolation of bioapatites from animal sources and the characteristics of the extracted bioapatites. Particular attention is devoted to describing individual groups of analytical techniques that serve to prove the presence of proteins and peptides in the isolated apatite phase. Subsequently, an evaluation is provided of the effectivity of the various extraction approaches, which is followed by a discussion of the analytical methods used for the analysis of residual proteins in isolated bioapatites. Further, the factors that are capable of affecting the retention of protein residues in the mineral component are outlined. The final part of the study provides a summary of, and comments on, the required extraction levels and the methodology that is best able to deliver them.
Similar content being viewed by others
References
B Ben-Nissan 2003 Natural bioceramics: from coral to bone and beyond Curr Opin Solid State Mater Sci 7 283 288 https://doi.org/10.1016/j.cossms.2003.10.001
TJ Webster C Ergun RH Doremus RW Siegel R Bizios 2000 Enhanced functions of osteoblasts on nanophase ceramics Biomaterials 21 17 1803 1810 https://doi.org/10.1016/S0142-9612(00)00075-2
M Šupová 2015 Substituted hydroxyapatites for biomedical applications: a review Ceram Int 41 9203 9231 https://doi.org/10.1016/j.ceramint.2015.03.316
K Dhanaraj C Suresh Kumar SH Socrates J Vinoth Arulraj G Suresh 2021 A comparative analysis of microwave assisted natural (Murex virgineus shell) and chemical nanohydroxyapatite: structural, morphological and biological studies J Austral Ceram Soc 57 1 173 183
MFMA Zamri R Bahru R Amin MUA Khan SIA Razak SA Hassan MRA Kadir NHM Nayan 2021 Waste to health: a review of waste derived materials for tissue engineering J Clean Prod 290 125792 https://doi.org/10.1016/j.jclepro.2021.125792
NAS Mohd Pu'ad P Koshy HZ Abdullah 2019 Syntheses of hydroxyapatite from natural sources Heliyon 5 e01588 https://doi.org/10.1016/j.heliyon.2019.e01588
OS Mahdi 2018 Preparation of hydroxyapatite from natural resources literature review GSJ 6 10 46 52
IO Oladele OG Agbabiaka OG Olasunkanmi 2018 Non-synthetic sources for the development of hydroxyapatite J Appl Biotechnol Bioeng 5 2 88 95 https://doi.org/10.15406/jabb.2018.05.00122
M Šupová 2014 Isolation and preparation of nanoscale bioapatites from natural sources: a review J Nanosci Nanotechnol 14 1 18 https://doi.org/10.1166/jnn.2014.8895
M Figueiredo A Fernando G Martins 2010 Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone Ceram Int 36 2383 2393 https://doi.org/10.1016/j.ceramint.2010.07.016
SS Rahavi O Ghaderi A Monshi 2017 A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources Russian J Non-Ferr Met 58 3 276 286 https://doi.org/10.3103/S1067821217030178
M Rana N Akhtar S Rahman 2017 Extraction of hydroxyapatite from bovine and human cortical bone by thermal decomposition and effect of gamma radiation: a comparative study Int J Complement Alt Med 8 3 00263 https://doi.org/10.15406/ijcam.2017.08.00263
G Göller FN Oktar 2002 Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite Mater Lett 56 142 147 https://doi.org/10.1016/S0167-577X(02)00430-5
L Xiaoying F Yongbin G Dachun 2007 Preparation and characterization of natural hydroxyapatite from animal hard tissue Key Eng Mater 342–343 213
M Raspanti S Guizzardi V Pasquale De 1994 Ultrastructure of heat-deproteinated compact bone Biomaterials 15 433 437 https://doi.org/10.1016/0142-9612(94)90222-4
R Murugan S Ramakrishna RK Panduranga 2006 Nanoporous hydroxy-carbonate apatite scaffold made of natural bone Mater Lett 60 2844 2847 https://doi.org/10.1016/j.matlet.2006.01.104
T Šmrhová P Junková S Kučková 2020 Peptide mass mapping in bioapatites isolated from animal bones J Mater Sci Mater Med 31 32 https://doi.org/10.1007/s10856-020-06371-z
HM Kim C Rey MJ Glimcher 1995 Isolation of calcium-phosphate crystals of bone by non-aqueous methods at low temperature J Bone Miner Res 10 1589 1601 https://doi.org/10.1002/jbmr.5650101021
SJ Eppell W Tong JL Katz 2001 Shape and size of isolated bone mineralites measured using atomic force microscopy J Ortop Res 19 1027 1034 https://doi.org/10.1016/S0736-0266(01)00034-1
Lin FH, Liao CJ, Chen KS, et al. Preparation of a biphasic porous bioceramic by heating bovine cancellous bone with Na4P2O7 · 10H2O addition. Biomaterials 1999, 20: 475-484. https://doi.org/10.1016/S0142-9612(98)00193-8.
A Ruksudjarit K Pengpat G Rujijanagul 2008 Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone Curr Appl Phys 8 270 272 https://doi.org/10.1016/j.cap.2007.10.076
SI Roohani Esfahani F Tavangarian R Emadi 2008 Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement Mater Lett 62 3428 3430 https://doi.org/10.1016/j.matlet.2008.02.06
R Emadi F Tavangarian SI Roohani Esfahani 2010 Biodegradable and bioactive properties of a novel bone scaffold coated with nanocrystalline bioactive glass for bone tissue engineering Mater Lett 64 1528 1531 https://doi.org/10.1016/j.matlet.2010.04.011
A Doostmohammadi A Monshi MH Fathi 2011 A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite Ceram Inter 37 1601 1607 https://doi.org/10.1016/j.ceramint.2011.03.009
A Doostmohammadi A Monshi MH Fathi 2011 A comparative physico-chemical study of bioactive glass and bone-derived hydroxyapatite Ceram Int 37 1601 1607 https://doi.org/10.1016/j.ceramint.2011.03.009
MR Ayatollahi MY Yahya H Asgharzadeh Shirazi 2015 Mechanical and tribological properties of hydroxyapatite nanoparticles extracted from natural bovine bone and the bone cement developed by nano-sized bovine hydroxyapatite filler Ceram Intern 41 10818 10827 https://doi.org/10.1016/j.ceramint.2015.05.021
M Yetmez ZE Erkmen C Kalkandelen 2017 Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite Mater Sci Eng C 77 470 475 https://doi.org/10.1016/j.msec.2017.03.290
M Šupová T Suchý Z Sucharda 2019 The comprehensive in vitro evaluation of eight different calcium phosphates: significant parameters for cell behavior J Amer Ceram Soc 102 2882 2904 https://doi.org/10.1111/jace.16110
NAM Barakat KA Khalil FA Sheikh 2008 Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: extraction of biologically desirable Hap Mater Sci Eng C 28 1381 1387 https://doi.org/10.1016/j.msec.2008.03.003
NAM Barakat SM Khil AM Omran 2009 Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods J Mater Process Technol 209 3408 3415 https://doi.org/10.1016/j.jmatprotec.2008.07.040
S Patel J Han W Qiu 2015 Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application J Environ Chem Eng 3 2368 2377 https://doi.org/10.1016/j.jece.2015.07.031
CY Ooi M Hamdi S Ramesh 2007 Properties of hydroxyapatite produced by annealing of bovine bone Ceram Int 33 1171 1177 https://doi.org/10.1016/j.ceramint.2006.04.001
CP Yoganand V Selvarajan OM Goudouri 2011 Preparation of bovine hydroxyapatite by transferred arc plasma Curr Appl Phys 11 702 709 https://doi.org/10.1016/j.cap.2010.11.035
JL Manalu B Soegijono DJ Indrani 2015 Characterization of hydroxyapatite derived from bovine bone Asian J Appl Sci 3 4 758 765
Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater, 2019, 1-7, https://doi.org/10.1177/2280800019836829
NA Khan M Ahmed NH Syed 2020 Effect of Ca (OH)2 and heat treatment on the physico-chemical properties of bovine bone powder; a material useful for medical, catalytic, and environmental applications Mater Sci 26 1 114 119 https://doi.org/10.5755/j01.ms.26.1.21219
K Haberko M Bućko M Haberko 2003 Natural hydroxyapatite – preparation, properties Eng Biomater 30–33 32 37
A Niakan S Ramesh P Ganesan 2015 Sintering behaviour of natural porous hydroxyapatite derived from bovine bone Ceram Int 41 3024 3029 https://doi.org/10.1016/j.ceramint.2014.10.138
J Brzezińska-Miecznik K Haberko M Sitarz 2015 Hydroxyapatite from animal bones – extraction and properties Ceram Int 41 4841 4846 https://doi.org/10.1016/j.ceramint.2014.12.041
RX Sun Y Lv YR Niu 2017 Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders Ceram Inter 43 16792 16798 https://doi.org/10.1016/j.ceramint.2017.09.075
NH Adenan I Zainol NA Rahim 2018 Extraction of nanohydroxyapatite from waste bovine bone using alkaline digestion method J Phys: Conf Ser 1082 012005 https://doi.org/10.1088/1742-6596/1082/1/012005
R Murugan TS Sampath Kumar RK Panduranga 2002 Fluorinated bovine hydroxyapatite: preparation and characterization Mater Lett 57 429 433 https://doi.org/10.1016/S0167-577X(02)00805-4
R Emadi SI Roohani Esfahani F Tavangarian 2010 A novel, low temperature method for the preparation of ß-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone Mater Lett 64 993 996 https://doi.org/10.1016/j.matlet.2010.01.085
R Murugan K Panduranga Rao TS Sampath Kumar 2003 Heat-deproteinated xenogeneic bone from slaughterhouse waste: physico-chemical properties Bull Mater Sci 26 523 528 https://doi.org/10.1007/BF02707351
MM Rana N Akhtar MS Rahman 2017 Extraction and characterization of hydroxyapatite from bovine cortical bone and effect of radiatio Inter J Biosci 3 20 30 https://doi.org/10.12692/ijb/11.3.20-30
AM Sofronia R Baies EM Anghel 2014 Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite Mater Sci Eng C 43 153 163 https://doi.org/10.1016/j.msec.2014.07.023
SM Londoñ-Restrepo CF Ramirez-Gutierrez A Real del 2016 Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air J Mater Sci 51 4431 4441 https://doi.org/10.1007/s10853-016-9755-4
W Khoo FM Nor H Ardhyananta 2015 Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures Proc Manuf 2 196 201 https://doi.org/10.1016/j.promfg.2015.07.034
E Hosseinzadeh M Davarpanah N Hassanzadeh Nemati 2014 Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method Int J Org Transplant Med 5 1 23 31
MK Herliansyah DA Nasution M Hamdi 2007 Preparation and characterization of natural hydroxyapatite: a comparative study of bovine bone hydroxyapatite and hydroxyapatite from calcite Mater Sci Forum 1441 561 565 https://doi.org/10.4028/www.scientific.net/MSF.561-565.1441
S Dimović I Smičiklas I Plećaš 2009 Comparative study of differently treated animal bones for Co2+ removal J Hazard Mater 164 279 287 https://doi.org/10.1016/j.jhazmat.2008.08.013
ME Bahrololoom M Javidi S Javadpour 2009 Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash J Ceram Proces Res 10 2 129 138
M Younesi S Javadpour ME Bahrololoom 2011 Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash J Mater Engin Perform 20 8 1484 1490 https://doi.org/10.1007/s11665-010-9785-z
MK Herliansyah M Hamdi A Ide-Ektessabi 2009 The influence of sintering temperature on the properties of compacted bovine hydroxyapatite Mater Sci Eng C 29 1674 1680 https://doi.org/10.1016/j.msec.2009.01.007
Toibah AR, Misran F, Mustafa Z, et al. Calcium phosphate from waste animal bones: phase identification analysis. J Adv Manuf Tech 2018, 12.1 (3): 99-110.
OS Mahdi 2017 Preparation and characterization of hydroxyapatite from bovine teeth Adv Nat Appl Sci 11 623 630
M Lombardi P Palmero K Haberko 2011 Processing of a natural hydroxyapatite powder: From powder optimization to porous bodies development J Eur Ceram Soc 31 2513 2518 https://doi.org/10.1016/j.jeurceramsoc.2011.02.017
PAF Sossa BS Giraldo BCG Garcia 2018 Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties Matéria 4 e12217 https://doi.org/10.1590/S1517-707620180004.0551
AM Janus M Faryna K Haberko 2008 Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones Microchim Acta 161 3 349 353 https://doi.org/10.1007/s00604-007-0864-2
K Haberko MM Bućko W Mozgawa 2009 Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres Ceram Int 35 2537 2540 https://doi.org/10.1016/j.ceramint.2009.02.008
Sobczak-Kupiec A, Malina D, Pia̧tkowski M, et al. Physicochemical and biological properties of hydrogel/gelatin/hydroxyapatite PAA/G/HAp/AgNPs composites modified with silver nanoparticles. J Nanosci Nanotechnol 2012, 12: 9302-9311. https://doi.org/10.1166/jnn.2012.6756.
U Iriarte-Velasco JL Ayastuy L Zudaire 2014 An insight into the reactions occurring during the chemical activation of bone char Chem Engin J 251 217 227 https://doi.org/10.1016/j.cej.2014.04.048
MP Ramírez Fernández SA Gehrke CPA Martinez 2017 SEM-EDX study of the degradation process of two xenograft materials used in sinus lift procedures Materials 10 5 542 https://doi.org/10.3390/ma10050542
K Haberko MM Bućko J Brzezińska-Miecznik 2006 Natural hydroxyapatite—its behaviour during heat treatment J Eur Ceram Soc 26 537 542 https://doi.org/10.1016/j.jeurceramsoc.2005.07.033
EA Ofudje A Rajendran AI Adeogun 2018 Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications Adv Powder Technol 29 1 8 https://doi.org/10.1016/j.apt.2017.09.008
A Sobczak A Kida Z Kowalski 2009 Evaluation of the biomedical properties of hydroxyapatite obtained from bone waste Pol J Chem Technol 11 37 43 https://doi.org/10.2478/v10026-009-0010-5
A Sobczak-Kupiec Z Wzorek 2012 The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite Ceram Int 38 641 647 https://doi.org/10.1016/j.ceramint.2011.06.065
S Guizzardi C Montanari S Migliaccio 2000 Qualitative assessment of natural apatite in vitro and in vivo J Biomed Mater Res B 53 227 234 https://doi.org/10.1002/(SICI)1097-4636(2000)53:3<227::AID-JBM7>3.0.CO;2-E
Pawar S, Theodore T. Development of hydroxyapatite from waste mutton bones and its application for hexavalent chromium removal from aqueous solutions-Adsorption isotherms and kinetics study. In: AIP Conference Proceedings. AIP Publishing LLC, 2020. p. 030001., https://doi.org/10.1063/5.0022839
JC Hiller TJU Thompson MP Evison 2003 Bone mineral change during experimental heating: an X-ray scattering investigation Biomaterials 24 28 5091 5097 https://doi.org/10.1016/S0142-9612(03)00427-7
HL Jaber AS Hammood N Parvin 2018 Characterization of hydroxyapatite powder from natural camelus bone J Austral Ceram Soc 54 1 1 10 https://doi.org/10.1007/s41779-017-0120-0
JD Termine ED Eanes DJ Greenfield 1973 Hydrazine-deproteinated bone mineral Physical and chemical properties Calc Tiss Res 12 73 90 https://doi.org/10.1007/BF02013723
A Bigi G Cojazzi S Panzavolta 1997 Chemical and structural characterization of the mineral phase from cortical and trabecular bone J Inorg Biochem 68 45 51 https://doi.org/10.1016/S0162-0134(97)00007-X
OH Lowry NJ Rosebrough AL Farr 1951 Protein measurement with the folin phenol reagent J Biol Chem 193 265 275
KP Malla S Regmi A Nepal 2020 Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone Inter J Biomater 1690178 10 https://doi.org/10.1155/2020/1690178
F Sharifianjazi A Esmaeilkhanian M Moradi A Pakseresht MS Asl H Karimi-Maleh HW Jang M Shokouhimehr RS Varma 2021 Biocompatibility and mechanical properties of pigeon bone waste extracted natural nano-hydroxyapatite for bone tissue engineering Mat Sci Eng B 264 114950 https://doi.org/10.1016/j.mseb.2020.114950
M Šupová GS Martynková Z Sucharda 2011 Bioapatite made from chicken femur bone Ceram-Silikaty 55 256 260
R Rajesh A Hariharasubramanian YD Ravichandran 2012 Chicken bone as a bioresource for the bioceramic (hydroxyapatite) Phosphorus Sulfur Silicon 187 914 925 https://doi.org/10.1080/10426507.2011.650806
AZ Alshemary A Muhammad A Taha 2018 Physico-chemical and biological properties of hydroxyapatite extracted from chicken beaks Mater Let 215 169 172 https://doi.org/10.1016/j.matlet.2017.12.076
J Venkatesan SK Kim 2010 Effect of temperature on isolation and characterization of hydroxyapatite from Tuna (Thunnus obesus) bone Materials 3 4761 4772 https://doi.org/10.3390/ma3104761
R Pallela J Venkatesan SK Kim 2011 Polymer assisted isolation of hydroxyapatite from Thunnus obesus bone Ceram Int 37 3489 3497 https://doi.org/10.1016/j.ceramint.2011.06.004
J Venkatesan ZJ Qian B Ryu 2011 A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone Biomed Mater 6 035003 https://doi.org/10.1088/1748-6041/6/3/035003
J Venkatesan B Lowe P Manivasagan 2015 Isolation and characterization of nano-hydroxyapatite from salmon fish bone Materials 8 5426 5439 https://doi.org/10.3390/ma8085253
TM Coelho ES Nogueira A Steimacher 2006 Characterization of nanostructured hydroxyapatite obtained from the bones of Brazilian river fish J Appl Phys 100 094312 https://doi.org/10.1063/1.2369647
TM Coelho ES Nogueira WR Weinand 2007 Thermal properties of natural nanostructured hydroxyapatite extracted from fish bone waste J Appl Phys 101 084701 https://doi.org/10.1063/1.2718866
B Ratna Sunil M Jagannatham 2016 Producing hydroxyapatite from fish bones by heat treatment Mater Lett 185 411 414 https://doi.org/10.1016/j.matlet.2016.09.039
A Cahyanto E Kosasih D Aripin 2017 Fabrication of hydroxyapatite from fish bones waste using reflux method IOP Conf. Series: Mater Sci Eng 172 012006 https://doi.org/10.1088/1757-899X/172/1/012006
M Ozawa S Suzuki 2002 Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment J Am Ceram Soc 85 1315 1317 https://doi.org/10.1111/j.1151-2916.2002.tb00268.x
M Boutinguiza J Pou R Comesaña 2012 Biological hydroxyapatite obtained from fish bones Mat Sci Eng C 32 478 486 https://doi.org/10.1016/j.msec.2011.11.021
A Pa S Paul AR Choudhury 2017 Synthesis of hydroxyapatite from Lates calcarifer fish bone for biomedical applications Mater Lett 203 89 92 https://doi.org/10.1016/j.matlet.2017.05.103
C Piccirillo MF Silva RC Pullar 2013 Extraction and characterisation of apatite-and tricalcium phosphate-based materials from cod fish bones Mater Sci Eng C 33 1 103 110 https://doi.org/10.1016/j.msec.2012.08.014
C Piccirillo RC Pullar DM Tobaldi 2014 Hydroxyapatite and chloroapatite derived from sardine by-products Ceram Int 40 13231 13240 https://doi.org/10.1016/j.ceramint.2014.05.030
HB Modolon J Inocente AM Bernardin ORK Montedo S Arcaro 2021 Nanostructured biological hydroxyapatite from Tilapia bone: a pathway to control crystallite size and crystallinity Ceram Inter 47 27685 27693 https://doi.org/10.1016/j.ceramint.2021.06.193
S Mondal S Mahata S Kundu 2010 Processing of natural resourced hydroxyapatite ceramics from fish scale Adv Appl Ceram 109 234 239 https://doi.org/10.1179/174367509X12581069052090
S Kongsri K Janpradit K Buapa 2013 Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution Chem Eng J 215–216 522 532 https://doi.org/10.1016/j.cej.2012.11.054
NN Panda K Pramanik LB Sukla 2014 Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold Bioprocess Biosyst Eng 37 3 433 440 https://doi.org/10.1007/s00449-013-1009-0
W Pon-On P Suntornsaratoon N Charoenphandhu 2016 Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative materiál Mater Sci Eng C 62 183 189 https://doi.org/10.1016/j.msec.2016.01.051
Y Alparslan T Baygar T Baygar 2017 Extraction, characterization and antimicrobial activity of hydroxyapatite from seabass and seabream scale J Food Health Sci 3 3 90 96 https://doi.org/10.3153/JFHS17012
dos Santos Horta MK, Moura FJ, Aguilar MS, Westin CB, Navarro da Rocha D, Brant de Campos J. In vitro evaluation of natural hydroxyapatite from Osteoglossum bicirrhosum fish scales for biomedical application. Int J Appl Ceram Technol, 2021.https://doi.org/10.1111/ijac.13846
B Mondal S Mondal A Mondal 2016 Fish scale derived hydroxyapatite scaffold for bone tissue engineering Mater Charact 121 112 124 https://doi.org/10.1016/j.matchar.2016.09.034
YC Huang PC Hsiao HJ Chai 2011 Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells Ceram Int 37 1825 1831 https://doi.org/10.1016/j.ceramint.2011.01.018
N Muhammad Y Gao F Iqbal 2016 Extraction of biocompatible hydroxyapatite from fish scales using novel approach of ionic liquid pretreatment Separ Purif Techn 161 129 135 https://doi.org/10.1016/j.seppur.2016.01.047
S Paul A Pal AR Choudhury 2017 Effect of trace elements on the sintering effect of fish scale derived hydroxyapatite and its bioactivity Ceram Inter 43 15678 15684 https://doi.org/10.1016/j.ceramint.2017.08.127
M López-Álvarez S Pérez-Davila C Rodríguez-Valencia 2016 The improved biological response of shark tooth bioapatites in a comparative in vitro study with synthetic and bovine bone grafts Biomed Mater 11 3 035011 https://doi.org/10.1088/1748-6041/11/3/035011
M López-Álvarez E Vigo C Rodríguez-Valencia 2017 In vivo evaluation of shark teeth derived bioapatites Clin Oral Impl Res 28 9 e91 e100 https://doi.org/10.1111/clr.12934
M García-González FM Muñoz Guzón A González-Cantalapiedra 2020 Application of shark teeth–derived bioapatites as a bone substitute in veterinary orthopedics. preliminary clinical trial in dogs and cats Front Veter Sci 7 574017 https://doi.org/10.3389/fvets.2020.574017
SA Doğdu C Turan T Depci D Ayas 2021 Natural hydroxyapatite obtained from pufferfish teeth for potential dental application J Ceram Proces Res 22 3 356 361 https://doi.org/10.36410/jcpr.2021.22.3.356
B Wenz B Oesch M Horst 2001 Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone Biomaterials 22 1599 1606 https://doi.org/10.1016/S0142-9612(00)00312-4
Y Kim H Nowzari SK Rich 2013 Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review Clin Implant Dent Relat Res 15 5 645 653 https://doi.org/10.1111/j.1708-8208.2011.00407.x
Y Kim AE Rodriguez H Nowzari 2016 The risk of prion infection through bovine grafting Mater Clin Impl Dent Rel Res 18 6 1095 1102 https://doi.org/10.1111/cid.12391
Taylor DM, Grobben AH, Steele PJ. Preliminary data on the inactivation of TSE agents by a short NaOH treatmentin the acid bone gelatin manufacturing proces. A report to the EC Scientific Steering Committee, 2001.
DM Taylor H Fraser I McConnell 1994 Decontamination studies with the agents of bovine spongiform encephalopathy and scrapie Arch virol 139 3–4 313 326 https://doi.org/10.1007/BF01310794
D Taylor 2002 Inactivation of the BSE agent C. R. Biologies 325 1 75 76 https://doi.org/10.1016/S1631-0691(02)01386-0
S Alan MS Walker B Clark 1983 Conditions for the chemical and physical inactivation of the K. Fu. strain of the agent of Creutzfeldt-Jakob disease Am J Public Health 73 661 665
Berberi A, Samarani A, Nader N, et al. Physicochemical characteristics of bone substitutes used in oral surgery in comparison to autogenous bone, BioMed Res Inter, 2014, Article ID 320790, 9 pages. https://doi.org/10.1155/2014/320790.
ZP Kačarević F Kavehei A Houshmand 2018 Purification processes of xenogeneic bone substitutes and their impact on tissue reactions and regeneration Int J Artif Org 41 11 789 800 https://doi.org/10.1177/0391398818771530
M Barbeck R Unger F Witte 2017 Xenogeneic bone grafting materials. Implants 3 34 36
M Barbeck S Udeabor J Lorenz 2015 High-temperature sintering of xenogeneic bone substitutes leads to increased multinucleated giant cell formation: in vivo and preliminary clinical results J Oral Impl 41 5 e212 e222 https://doi.org/10.1563/aaid-joi-D-14-00168
S Joschek B Nies R Krotz 2000 Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone Biomaterials 21 16 1645 1658 https://doi.org/10.1016/S0142-9612(00)00036-3
JW Park JH Jang SR Bae 2009 Bone formation with various bone graft substitutes in critical-sized rat calvarial defect Clin Oral Implants Res 20 4 372 378 https://doi.org/10.1111/j.1600-0501.2008.01602.x
JW Park HJ Ko JH Jang 2012 Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects J Biomed Mater Res A 100 4 834 840 https://doi.org/10.1002/jbm.a.34017
MR Oliveira A Silva de S Ferreira 2015 Influence of the association between platelet-rich fibrin and bovine bone on bone regeneration. A histomorphometric study in the calvaria of rats Int J Oral Maxillofac Surg 44 5 649 655 https://doi.org/10.1016/j.ijom.2014.12.005
J Mah J Hung J Wang 2004 The efficacy of various alloplastic bone grafts on the healing of rat calvarial defects Europ J Orthod 26 5 475 482 https://doi.org/10.1093/ejo/26.5.475
T Accorsi-Mendonça MB Conz TC Barros 2008 Physicochemical characterization of two deproteinized bovine xenografts Braz Oral Res 22 1 5 10 https://doi.org/10.1590/s1806-83242008000100002
M Figueiredo J Henriques G Martins 2010 Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes—comparison with human bone J Biomed Mater Res B 92 409 419 https://doi.org/10.1002/jbm.b.31529
JW Park ES Kim JH Jang 2010 Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure Clin Oral Implants Res 21 3 268 276 https://doi.org/10.1111/j.1600-0501.2009.01846.x
J Śmieszek-Wilczewska R Koszowski J Pająk 2010 Comparison of postoperation bone defects healing of alveolar processes of maxila and mandible with the use of Bio-Gen and Bio-Oss J Clin Exp Dent 2 2 62 68 https://doi.org/10.4317/JCED.2.E60
AR Rokn MA Khodadoostan AARR Ghahroudi 2011 Bone formation with two types of grafting materials: a histologic and histomorphometric study Open Dent J 511 1 96 104 https://doi.org/10.2174/1874210601105010096
R Manfro FS Fonseca MC Bortoluzzi 2014 Comparative, histological and histomorphometric analysis of three anorganic bovine xenogenous bone substitutes: bio-oss, bone-fill and gen-ox anorganic J Maxillofac Oral Surg 13 4 464 470 https://doi.org/10.1007/s12663-013-0554-z
CAY Takauti F Futema RB Brito de 2014 Assessment of bone healing in rabbit calvaria grafted with three different biomaterials Braz Dent J 25 5 379 384 https://doi.org/10.1590/0103-6440201302383
CR Dumitrescu IA Neacsu VA Surdu AI Nicoara F Iordache R Trusca LT Ciocan A Ficai E Andronescu 2021 Nano-hydroxyapatite vs. xenografts: synthesis, characterization, and in vitro behavior Nanomaterials 11 2289 https://doi.org/10.3390/nano11092289
B Oliveira de WG Assunção JN Zanoni 2015 Evaluation of biomaterials with and without platelet-rich plasma: a histometric study using beagle dogs Braz J Oral Sci 14 4 306 310 https://doi.org/10.1590/1677-3225v14n4a10
AE Rodriguez H Nowzari 2019 The long-term risks and complications of bovine-derived xenografts: a case series J Indian Soc Periodontol 23 487 492 https://doi.org/10.4103/jisp.jisp_656_18
D Tadic M Epple 2004 A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone Biomaterials 25 987 994 https://doi.org/10.1016/S0142-9612(03)00621-5
SE Etok E Valsami-Jones TJ Wess 2007 Structural and chemical changes of thermally treated bone apatite J Mater Sci 42 9807 9816 https://doi.org/10.1007/s10853-007-1993-z
F Peters K Schwarz M Epple 2000 The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis Thermochim Acta 361 131 138 https://doi.org/10.1016/S0040-6031(00)00554-2
M Buckley M Collins J Thomas-Oates 2009 Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry Rapid Commun Mass Spectrom 23 3843 3854 https://doi.org/10.1002/rcm.4316
M Buckley M Collins J Thomas-Oates 2008 A method of isolating the collagen (I) a2 chain carboxytelopeptide for species identification in bone fragments Analyt Biochem 374 325 334 https://doi.org/10.1016/j.ab.2007.12.002
C Wadsworth M Buckley 2018 Characterization of proteomes extracted through collagen-based stable isotope and radiocarbon dating methods J Proteome Res 17 429 439 https://doi.org/10.1021/acs.jproteome.7b00624
M Buckley 2016 Species identification of bovine, ovine and porcine type 1 collagen; comparing peptide mass fingerprinting and lc-based proteomics methods Int J Mol Sci 17 445 461 https://doi.org/10.3390/ijms17040445
Nikolov M, Schmidt C, Urlaub H. Quantitative mass spectrometry-based proteomics: an overview. In Quantitative Methods in Proteomics. Methods in Molecular Biology (Methods and Protocols). Marcus K, Eds. Humana Press, Totowa, NJ, 2012: 893.
E Landi A Tampieri G Celotti 2004 Influence of synthesis and sintering parameters on the characteristics of carbonate apatite Biomaterials 2004 25 1763 1770 https://doi.org/10.1016/j.biomaterials.2003.08.026
JD Pasteris B Wopenka JJ Freeman 2004 Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials Biomaterials 25 229 238 https://doi.org/10.1016/S0142-9612(03)00487-3
Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR, 2017 EAG, INC, REV, 11.16.18. https://www.eag.com/techniques/spectroscopy/fourier-transform-infrared-spectroscopy-ftir/
FA Shah K Ruscsák A Palmquist 2019 50 years of scanning electron microscopy of bone—acomprehensive overview of the important discoveries madeand insights gained into bone material properties in health, disease, and taphonomy Bone Res 7 15 https://doi.org/10.1038/s41413-019-0053-z
W Traub T Arad S Weiner 1992 Growth of mineral crystals in turkey tendon collagen fibers Conn Tissue Res 28 99 111 https://doi.org/10.3109/03008209209014230
FL Lozano MA Peňa-Rico A Heredia 2003 Thermal analysis study of human bone J Mater Sci 38 4777 4782 https://doi.org/10.1023/A:1027483220584
PL Kronick P Cooke 1996 Thermal Stabilization of Collagen Fibers by Calcification Connect Tissue Res 33 275 282 https://doi.org/10.3109/03008209609028885
Krane SM, Glimcher MJ. Studies of the interaction of collagen and phosphate. In Radioisotope and Bone. LaCroix P, Budy AM, Eds. Blackwell, Oxford, England, 1962, p. 419.
H Develioğlu SU Saraydın Z Akkus 2015 Long-term assessment of bone formation in response to Gen Os and Gel 40 xenografts in an experimental rat model Biomed Res 26 4 666 671
PFE Bernabé LGN Melo LTA Cintra 2012 Bone healing in critical-size defects treated with either bone graft, membrane, or a combination of both materials: a histological and histometric study in rat tibiae Clin Oral Impl Res 23 384 388 https://doi.org/10.1111/j.1600-0501.2011.02166.x
SK Kim PJ Park YT Kim 2001 Study on acute subcutaneous toxicity of hydroxyapatite sinter produced from tuna bone in Sprague—Dawly rats Korean J Life Sci 11 97 102
Acknowledgements
Special thanks go to Mr. Darren Ireland for the English language correction of the paper.
Funding
I gratefully acknowledge the financial support provided for this study by the Long-term Conceptual Development Research Organisation under project no. RVO: 67985891.
Ethics declarations
Conflict of interest
The author declares no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Šupová, M. Problems associated with the assessment of organic impurities in bioapatites isolated from animal sources: a review. J Aust Ceram Soc 58, 227–247 (2022). https://doi.org/10.1007/s41779-021-00678-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41779-021-00678-y