Skip to main content

Advertisement

Log in

Porous hydroxyapatite scaffold produced using Musa paradisiaca template and its in vitro bioactivity

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The effect of HA amount on the physical properties and bioactivity of porous HA prepared by replica method using Musa paradisiaca as template has been studied. The templates were prepared by cutting the banana fronds into cylindrical shape. Slurries were prepared by mixing 9, 10, and 11 g HA with 11% sago starch, 2.5% Darvan821A, and distilled water. Slurries then stirred at 150 rpm for 24 h. Templates were impregnated into slurry and then dried at 110°C for 2 h. The green bodies were burned at 600°C for 1 h followed by sintering at 1250°C for 1 h. Porous HA was tested in vitro using simulated body fluid solution by soaking for 7–14 days. The cell attachment done by using Baby Hamster Kidney (BHK21) cell. The porous HA was produced with shrinkage in the range of 53.6–58.9%vol, density of 1.26–1.47 g/cm3, porosity of 53.5–60.1%, and compressive strength of 3.89–4 MPa. The pore size was obtained at the range 71.26–89.13 μm. The biodegradation rate of samples was found at the range of 1.34–2.27% with the increased apatite and carbonate content on porous HA after immersion proven by FTIR result. The cell attachment test showed that the viability of HA was 80.3% confirming that samples were non-toxic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thirumalai, J. Introductory chapter: The testament of hydroxyapatite: new prospect in regenerative medicinal treatments. In Hydroxyapatite: advances in composite nanomaterials, biomedical applications and its technological facets; BoD–Books on Demand. 3–14 (2018)

  2. Qi, C., Zhu, Y.J., Lu, B.Q., Zhao, X.Y., Zhao, J., Chen, F.: J. Mater. Chem. 2012(22), 22642–2650 (2012)

    Article  Google Scholar 

  3. Zhang, Y., Kong, D., Yokogawa, Y., Feng, X., Tao, Y., Qiu, T.: J. Am. Ceram. Soc. 95(1), 147–152 (2012)

    Article  CAS  Google Scholar 

  4. Maheshwari, S.U., Samuel, V.K., Nagiah, N.: Ceram. Int. 40, 8469–8477 (2014)

    Article  Google Scholar 

  5. Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: J. Am. Ceram. Soc. 89(6), 1771–1789 (2006)

    Article  CAS  Google Scholar 

  6. Ahmed, Y.M.Z., Ewais, E.M.M., El-Seikh, S.M.J.: Asian Ceram. Soc. 3, 108–115 (2015)

    Article  Google Scholar 

  7. Sopyan, I., Fadli, A., Mel, M.: J. Mech. Behav. Biomed. Mater. 8, 86–98 (2012)

    Article  CAS  Google Scholar 

  8. Sopyan, I., Kaur, J.: Ceram. Int. 35, 3161–3168 (2009)

    Article  CAS  Google Scholar 

  9. Min, S.-H., Jin, H.-H., Park, H.-Y., Park, I.-M., Park, H.-C., Yoon, S.-Y.: Mater. Sci. For. 2006(510–511), 754–757 (2006)

    Google Scholar 

  10. Fadli, A., Widiyanti, P., Noviana, D., Prabowo, A., Ismawati, H.: J. Rek. Kim. Ling. 15(2), 62–70 (2020)

    Article  Google Scholar 

  11. Sharma, K., Dixit, A., Singh, S., Bhattacharya, S., Prajapat, C.L., Sharma, P.K., Yusuf, S.M., Tyagi, A.K., Kothiyal, G.P.: Mater. Sci. Eng. C 29(7), 2226–2233 (2009)

    Article  CAS  Google Scholar 

  12. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: J. Biomed. Mater. Res. 1990(24), 721–734 (1990)

    Article  Google Scholar 

  13. Swain, S.K., Bhattacharyya, S., Sarkar, D.: Mater. Sci. Eng. C 31, 1240–1244 (2011)

    Article  CAS  Google Scholar 

  14. Fadli, A.; Komalasari, K.; Huda, F.; Ardi, T.; Habib, I. J. Nat. Fiber. (2020)https://doi.org/10.1080/15440478.2020.1848698

  15. Kokubo, T., Takadama, H.: Biomaterial. 12(2), 155–163 (2006)

    Article  Google Scholar 

  16. Li, S., Huang, B., Chen, Y., Gao, H., Fan, Q., Zhao, J., Su, W.: Int. J. Sur. 11(6), 477–482 (2013)

    Article  Google Scholar 

  17. Kang, S.J.L.: Sintering, densification, grain growth & microstructure. Elsevier Butterworth-Heinemann, Burlington, UK (2005)

    Google Scholar 

  18. Kamal, M.M., Baini, R., Mohamaddan, S., Selaman, O.S., Zauzi, N.A., Rahman, M.R., ... Othman, A.K.: Effect of temperature to the properties of sago starch. In IOP Conf. Ser.: Mat, Sci. and Eng. 206(1), 012–039 (2017)

  19. Yubao, L., Klein, C.P.A.T., Xindong, Z., DeGroot, K.: Biomaterials 14, 969–972 (1993)

    Article  CAS  Google Scholar 

  20. Fadli, A.; Komalasari. Metode pembuatan komposit berpori menggunakan cara protein foaming-starch consolidation. Indonesia Patent. 2013; P00201304608.

  21. Rodríguez‐Lorenzo, L.M., Vallet‐Regí, M., Ferreira J.M.F.: Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. J. Biomed. Mater. Res. 60(2), 232–240 (2002)

  22. Kang, S.J.L.: Sintering: densification, grain growth and microstructure. Elsevier. Ch. 4–5, 37–77 (2004)

  23. Jamaludin, A.R., Kasim, S.R., Ismail, A.K., Abdullah, M.Z., Ahmad, Z.A.: J. Eur. Ceram. Soc. 35, 1905–9190 (2015)

    Article  CAS  Google Scholar 

  24. Garrido, L.B., Albano, M.P., Genova, L.A., Plucknett, K.P.: J. Mater. Res. 13(1), 39–45 (2008)

    Google Scholar 

  25. Gibson, L.J., Ashby, M.F.: Cellular solids structure and properties. Pergamon Press, Oxford (1988)

  26. Al-khazraji, K.K., Hanna, W.A., Ahmed, P.S.: Eng. Tech. J. 28(10), 1880–1892 (2010)

    Google Scholar 

  27. Wang, C.X., Zhou, X., Wang, M.: Biomed. Mater. Eng. 14, 5–11 (2014)

    Google Scholar 

  28. Wen, H.B., de Wijin, J.R., Cui, F.Z., de Groot, K.: J. Biomed. Mater. Res. 41, 227–236 (1998)

    Article  CAS  Google Scholar 

  29. Takadama, H., Hashimoto, M., Mizuno, M., Kokubo, T.: Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials. Phosphorus Res Bull. 17, 119–125 (2004)

    Article  CAS  Google Scholar 

  30. ISO10993-5. International Standard : Biological evaluation of medical devices-Part 5 Tests for in vitro cytotoxicity (2009)

  31. Kantharia, N., Naik, S., Apte, S., Kheur, M., Kheur, S., Kale, B.J.: Dent. Res. Sci Dev. 1, 15–19 (2014)

    Article  Google Scholar 

  32. Murphy, C.M., Haugh, M.G., Brien, F.J.O.: Biomaterials. 31(3), 461–466 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from Ministry of Research Technology and Higher Education of Indonesia for the financing of this research (no. 21/INS-2/PPKE4/2019).

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Fadli.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadli, A., Widiyanti, P., Noviana, D. et al. Porous hydroxyapatite scaffold produced using Musa paradisiaca template and its in vitro bioactivity. J Aust Ceram Soc 58, 357–366 (2022). https://doi.org/10.1007/s41779-021-00677-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00677-z

Keywords

Navigation