Skip to main content

Advertisement

Log in

Influence of electrolyte composition on the microstructure and photocatalytic activity of TiO2 nanostructures

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, titanium dioxide (TiO2) nanostructures were produced on pure titanium in different electrolytes at constant voltage of 20 V for 30 min. The crystallographic structure, surface morphology, and optical properties of the films were investigated by XRD, SEM, and UV–vis spectrum, respectively. The wettability of the samples was determined by contact angle measurement equipment. The photocatalytic properties of the TiO2 films were tested by the degradation of a methylene blue (MB) as the model reaction under UV light irradiation. The results showed that the electrolyte composition can play an important role in the surface morphology of nanostructured TiO2 films and therefore on various properties such as optics, electronics, sensing, and degradation. The SEM images of the samples demonstrated that surface morphology was directly affected by the electrolyte composition. It is known that the surface area is a dominant factor affecting the photocatalytic activity of a porous TiO2 layer prepared by anodic oxidation. The TiO2 film (sample C) anodized in 1 M Na2SO4 containing 5 wt.% NH4F exhibited better photocatalytic performance as compared to the other oxide films. This is because a higher surface area with dense pore structure favors more photocatalytic active areas. The photocatalytic degradation efficiency of MB using sample C was reached to 92.35% and rate constant 5.92 × 10−3, respectively. Moreover, this sample showed lowest band gap energy that was almost 3.167 eV. We believe that new anodic TiO2 nanoporous structures are highly promising in photocatalytic decomposition of water and pollutants elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.N.R. Rao, S.R.C. Vivekchand, K. Biswas, A. Govindaraj, Synthesis of inorganic nanomaterials, Dalton Transactions, (2007) 3728–3749.

  2. Pishkar, N., Ghoranneviss, M., Ghorannevis, Z., Akbari, H.: Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Results in Physics 9, 1246–1249 (2018)

    Article  Google Scholar 

  3. Payan, A., Fattahi, M., Jorfi, S., Roozbehani, B., Payan, S.: Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation. Appl. Surf. Sci. 434, 336–350 (2018)

    Article  CAS  Google Scholar 

  4. Yan, G., Zhang, M., Hou, J., Yang, J.: Photoelectrochemical and photocatalytic properties of N+S co-doped TiO2 nanotube array films under visible light irradiation. Mater. Chem. Phys. 129, 553–557 (2011)

    Article  CAS  Google Scholar 

  5. Marien, C.B.D., Cottineau, T., Robert, D., Drogui, P.: TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of paraquat. Appl. Catal. B 194, 1–6 (2016)

    Article  CAS  Google Scholar 

  6. Nischk, M., Mazierski, P., Wei, Z., Siuzdak, K., Kouame, N.A., Kowalska, E., Remita, H., Zaleska-Medynska, A.: Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl. Surf. Sci. 387, 89–102 (2016)

    Article  CAS  Google Scholar 

  7. Ahmed, M.A., El-Katori, E.E., Gharni, Z.H.: Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloy. Compd. 553, 19–29 (2013)

    Article  CAS  Google Scholar 

  8. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011–2075 (2006)

    Article  CAS  Google Scholar 

  9. Jennings, J.R., Ghicov, A., Peter, L.M., Schmuki, P., Walker, A.B.: Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 130, 13364–13372 (2008)

    Article  CAS  Google Scholar 

  10. Tong, Z., Liu, S., Li, X., Mai, L., Zhao, J., Li, Y.: Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. Nanoscale 10, 3254–3261 (2018)

    Article  CAS  Google Scholar 

  11. Fei Yin, Z., Wu, L., Gui Yang, H., Hua Su, Y.: Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys 15, 4844–4858 (2013)

    Article  Google Scholar 

  12. Lai, Y., Zhuang, H., Sun, L., Chen, Z., Lin, C.: Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and their photoelectrochemical performance. Electrochim. Acta 54, 6536–6542 (2009)

    Article  CAS  Google Scholar 

  13. Su, P.-G., Chen, F.-Y., Wei, C.-H.: Simple one-pot polyol synthesis of Pd nanoparticles, TiO2 microrods and reduced graphene oxide ternary composite for sensing NH3 gas at room temperature. Sens. Actuators, B Chem. 254, 1125–1132 (2018)

    Article  CAS  Google Scholar 

  14. Wisitsoraat, A., Tuantranont, A., Comini, E., Sberveglieri, G., Wlodarski, W.: Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 517, 2775–2780 (2009)

    Article  CAS  Google Scholar 

  15. Viet, P.V., Phan, B.T., Mott, D., Maenosono, S., Sang, T.T., Thi, C.M., Hieu, L.V.: Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. J. Photochem. Photobiol., A 352, 106–112 (2018)

    Article  CAS  Google Scholar 

  16. Mazierski, P., Lisowski, W., Grzyb, T., Winiarski, M.J., Klimczuk, T., Mikołajczyk, A., Flisikowski, J., Hirsch, A., Kołakowska, A., Puzyn, T., Zaleska-Medynska, A., Nadolna, J.: Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study. Appl. Catal. B 205, 376–385 (2017)

    Article  CAS  Google Scholar 

  17. Fattakhova-Rohlfing, D., Zaleska, A., Bein, T.: Three-dimensional titanium dioxide nanomaterials. Chem. Rev. 114, 9487–9558 (2014)

    Article  CAS  Google Scholar 

  18. Li, Y., Wang, Y., Kong, J., Jia, H., Wang, Z.: Synthesis and characterization of carbon modified TiO2 nanotube and photocatalytic activity on methylene blue under sunlight. Appl. Surf. Sci. 344, 176–180 (2015)

    Article  CAS  Google Scholar 

  19. Kong, J., Song, C., Zhang, W., Xiong, Y., Wan, M., Wang, Y.: Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays. Superlattices Microstruct. 109, 579–587 (2017)

    Article  CAS  Google Scholar 

  20. Li, H., Cao, L., Liu, W., Su, G., Dong, B.: Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 38, 5791–5797 (2012)

    Article  CAS  Google Scholar 

  21. Liu, X., Chu, P.K., Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R. Rep. 47, 49–121 (2004)

    Article  Google Scholar 

  22. Haring, A., Morris, A., Hu, M.: Controlling morphological parameters of anodized titania nanotubes for optimized solar energy applications. Materials 5, 1890 (2012)

    Article  CAS  Google Scholar 

  23. Sulka, G.D., Kapusta-Kołodziej, J., Brzózka, A., Jaskuła, M.: Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim. Acta 55, 4359–4367 (2010)

    Article  CAS  Google Scholar 

  24. Radtke, A., Bal, M., Jędrzejewski, T.: Novel titania nanocoatings produced by anodic oxidation with the use of cyclically changing potential: their photocatalytic activity and biocompatibility. Nanomaterials 8, 712 (2018)

    Article  Google Scholar 

  25. Tighineanu, A., Ruff, T., Albu, S., Hahn, R., Schmuki, P.: Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 494, 260–263 (2010)

    Article  CAS  Google Scholar 

  26. Li, D., Lin, S., Li, S., Huang, X., Cao, X., Li, J.: Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays. J. Mater. Res. 27, 1029–1036 (2012)

    Article  CAS  Google Scholar 

  27. Hanaor, D.A.H., Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011)

    Article  CAS  Google Scholar 

  28. Jiang, X., Zheng, S., Shi, Y., Sun, Z., Zhao, Y.: Structural and optical property studies of TiO2 nanotube arrays prepared by anodic oxidation. J. Mater. Sci.: Mater. Electron. 29, 14852–14857 (2018)

    CAS  Google Scholar 

  29. Yuangpho, N., Le, S.T.T., Treerujiraphapong, T., Khanitchaidecha, W., Nakaruk, A.: Enhanced photocatalytic performance of TiO2 particles via effect of anatase–rutile ratio. Physica E 67, 18–22 (2015)

    Article  CAS  Google Scholar 

  30. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods, Environmental Science and Pollution Research, (2016).

  31. Zhang, M., Yao, G., Cheng, Y., Xu, Y., Yang, L., Lv, J., Shi, S., Jiang, X., He, G., Wang, P., Song, X., Sun, Z.: Temperature-dependent differences in wettability and photocatalysis of TiO2 nanotube arrays thin films. Appl. Surf. Sci. 356, 546–552 (2015)

    Article  CAS  Google Scholar 

  32. Kim, T.-H., Lee, J.-W., Kim, B.-S., Cha, H., Nah, Y.-C.: Morphological investigation of anodized TiO2 nanotubes fabricated using different voltage conditions. Microporous Mesoporous Mater. 196, 41–45 (2014)

    Article  CAS  Google Scholar 

  33. Dikici, T., Demirci, S., Erol, M.: Enhanced photocatalytic activity of micro/nano textured TiO2 surfaces prepared by sandblasting/acid-etching/anodizing process. J. Alloy. Compd. 694, 246–252 (2017)

    Article  CAS  Google Scholar 

  34. Tenkyong, T., SahayaSelva Mary, J., Praveen, B., Pugazhendhi, K., Sharmila, D.J., Shyla, J.M.: Structural modulation and band gap optimisation of electrochemically anodised TiO2 nanotubes. Mater Sci Semiconductor Process 83, 150–158 (2018)

    Article  CAS  Google Scholar 

  35. Regonini, D., Bowen, C.R., Jaroenworaluck, A., Stevens, R.: A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci. Eng. R. Rep. 74, 377–406 (2013)

    Article  Google Scholar 

  36. Momeni, M.M., Hakimian, M., Kazempour, A.: In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram. Int. 41, 13692–13701 (2015)

    Article  CAS  Google Scholar 

  37. Zeng, L., Song, W., Li, M., Jie, X., Zeng, D., Xie, C.: Comparative study on the visible light driven photocatalytic activity between substitutional nitrogen doped and interstitial nitrogen doped TiO2. Appl. Catal. A 488, 239–247 (2014)

    Article  CAS  Google Scholar 

  38. Sethi, D., Jada, N., Kumar, R., Ramasamy, S., Pandey, S., Das, T., Kalidoss, J., Mukherjee, P.S., Tiwari, A.: Synthesis and characterization of titania nanorods from ilmenite for photocatalytic annihilation of E coli. Journal of Photochemistry and Photobiology B: Biology 140, 69–78 (2014)

    Article  CAS  Google Scholar 

  39. You, X., Chen, F., Zhang, J., Anpo, M.: A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett. 102, 247–250 (2005)

    Article  CAS  Google Scholar 

  40. Nguyen, C.H., Fu, C.-C., Juang, R.-S.: Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J. Clean. Prod. 202, 413–427 (2018)

    Article  CAS  Google Scholar 

  41. Si, Y., Guo, Z.: Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale 7, 5922–5946 (2015)

    Article  CAS  Google Scholar 

  42. Dumitriu, C., Popescu, M., Ungureanu, C., Pirvu, C.: Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes. Appl. Surf. Sci. 341, 157–165 (2015)

    Article  CAS  Google Scholar 

  43. Liu, G., Du, K., Wang, K.: Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization. Appl. Surf. Sci. 388, 313–320 (2016)

    Article  CAS  Google Scholar 

  44. Kar, A., Smith, Y.R., Subramanian, V.: Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 43, 3260–3265 (2009)

    Article  CAS  Google Scholar 

  45. Wolski, L., Whitten, J.E., Sobczak, I., Ziolek, M.: The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO. Mater. Res. Bull. 85, 35–46 (2017)

    Article  CAS  Google Scholar 

  46. Duo, S., Zhong, R., Liu, Z., Wang, J., Liu, T., Huang, C., Wu, H.: One-step hydrothermal synthesis of ZnO microflowers and their composition-/hollow nanorod-dependent wettability and photocatalytic property. J. Phys. Chem. Solids 120, 20–33 (2018)

    Article  CAS  Google Scholar 

  47. Zhou, F., Yan, C., Sun, Q., Komarneni, S.: TiO2/Sepiolite nanocomposites doped with rare earth ions: Preparation, characterization and visible light photocatalytic activity. Microporous Mesoporous Mater. 274, 25–32 (2019)

    Article  CAS  Google Scholar 

  48. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., He, Y.: An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)

    Article  CAS  Google Scholar 

  49. Konstantinou, I.K., Albanis, T.A.: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  50. Saravanan, R., Gupta, V.K., Narayanan, V., Stephen, A.: Comparative study on photocatalytic activity of ZnO prepared by different methods. J. Mol. Liq. 181, 133–141 (2013)

    Article  CAS  Google Scholar 

  51. Marschall, R., Wang, L.: Non-metal doping of transition metal oxides for visible-light photocatalysis. Catal. Today 225, 111–135 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Yılmaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, O., Ebeoglugil, F., Demirci, S. et al. Influence of electrolyte composition on the microstructure and photocatalytic activity of TiO2 nanostructures. J Aust Ceram Soc 58, 123–133 (2022). https://doi.org/10.1007/s41779-021-00676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00676-0

Keywords

Navigation