Skip to main content
Log in

Synthesis of strontium hexaboride via condensed precursor technique: in situ formation of B4C as reductant

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The divalent alkaline earth borides have received great attention owing to their superior properties for energy-related applications. Among these borides, SrB6 is very popular owing to its excellent magnetic and IR-absorbing properties. In the present study, the synthesis parameters such as temperature and dwell time to synthesize strontium hexaboride were investigated. Strontium hexaboride powders were synthesized via boro/carbothermal reduction (BCTR) by using the condensed product obtained from boric acid, polyol, and strontium carbonate. Two different methods were tried to prepare an optimum condensed product which was used as a raw material for boride synthesis. The condensed products prepared with different methods were characterized to reveal the thermal behavior of the products by simultaneous thermal analysis (STA). The phase formations were examined via X-ray diffractometer (XRD) to investigate the effect of boro/carbothermal reduction temperature and dwell time. The elemental analysis and powder morphology of the final product synthesized via the optimum condensed product were carried out via scanning electron microscopy-energy dispersive X-ray analysis (SEM–EDX). The transitional phases were identified as strontium-rich borates, carbon, and boron carbide (B4C). The optimum synthesis condition of strontium hexaboride via the condensed precursor technique was determined as 1500 °C for 8 h under an Ar flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Etourneau J., Mercurio J. P., Hagenmuller P.: Compounds based on octahedral B6 units: Hexaborides and tetraborides. In: Matkovich V. I. (eds.) Boron and refractory borides. Springer, Berlin, Heidelberg (1977). https://doi.org/10.1007/978-3-642-66620-9_10

  2. Yilmaz, D., Koç, N., Turan, S.: Synthesis of calcium hexaboride powder via boro/carbothermal reduction with a gel precursor. J. Ceram. Sci. Tech 356(04), 7–349 (2016). https://doi.org/10.4416/JCST2016-00044

    Article  Google Scholar 

  3. Dorneles, L.S., Venkatesan, M., Moliner, M., Lunney, J.G., Coey, J.M.D.: Magnetism in thin films of CaB6 and SrB6. Appl. Phys. Lett. 85(26), 6377–6379 (2004). https://doi.org/10.1063/1.1840113

    Article  CAS  Google Scholar 

  4. Takeda, M., Terui, M., Takahashi, N., Ueda, N.: Improvement of thermoelectric properties of alkaline-earth hexaborides. J. Solid State Chem. 179(9), 2823–2826 (2006). https://doi.org/10.1016/j.jssc.2006.01.025

    Article  CAS  Google Scholar 

  5. Takeda, M.; Fukuda, T.; Miura, T. Thermoelectric properties of metal-hexaborides. Int. Conf. Thermoelectr. ICT, Proc. 2002, 2002-Janua, 173–176. https://doi.org/10.1109/ICT.2002.1190293.

  6. Jash, P., Nicholls, A.W., Ruoff, R.S., Trenary, M.: Synthesis and characterization of single-crystal strontium hexaboride nanowires. Nano Lett. 8(11), 3794–3798 (2008). https://doi.org/10.1021/nl8021225

    Article  CAS  Google Scholar 

  7. Dou, Z., Zhang, T., Liu, Y., Guo, Y., He, J.: Preparation of CeB6 nano-powders by self-propagating high-temperature synthesis (SHS). J. Rare Earths 29(10), 986–990 (2011). https://doi.org/10.1016/S1002-0721(10)60583-2

    Article  CAS  Google Scholar 

  8. Dou, Z., Zhang, T., Guo, Y., He, J.: Research on preparation optimization of nano CeB6 powder and ıts high temperature stability. J. Rare Earths 30(11), 1129–1133 (2012). https://doi.org/10.1016/S1002-0721(12)60192-6

    Article  CAS  Google Scholar 

  9. Yildiz, Ö.: The effect of heat treatment on colemanite processing: a ceramics application. Powder Technol. 142(1), 7–12 (2004). https://doi.org/10.1016/j.powtec.2004.03.006

    Article  CAS  Google Scholar 

  10. Yildiz, Ö., Telle, R., Schmalzried, C., Kaiser, A.: Phase transformation of transient B4C to CaB6 during production of CaB6 from colemanite. J. Eur. Ceram. Soc. 25(14), 3375–3381 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.09.001

    Article  CAS  Google Scholar 

  11. Serebryakova, T.I., Marek, E.V.: Conditions of preparation of calcium and barium hexaboride powders. Sov. Powder Metall. Met. Ceram. 8(8), 608–612 (1969). https://doi.org/10.1007/BF00775416

    Article  Google Scholar 

  12. Kanakala, R., Rojas-George, G., Graeve, O.A.: Unique preparation of hexaboride nanocubes: a first example of boride formation by combustion synthesis. J. Am. Ceram. Soc. 93(10), 3136–3141 (2010). https://doi.org/10.1111/j.1551-2916.2010.03853.x

    Article  CAS  Google Scholar 

  13. Balci, Ö., Aǧaoǧullari, D., Duman, I., Öveçoǧlu, M.L.: Synthesis of CaB 6 powders via mechanochemical reaction of Ca/B 2O 3 blends. Powder Technol. 225, 136–142 (2012). https://doi.org/10.1016/j.powtec.2012.03.051

    Article  CAS  Google Scholar 

  14. Agaogullari, D., Balci, O., Ovecoglu, M.L., Duman, I.: 2016 Preparation of LaB6 powders via calciothermic reduction using mechanochemistry and acid leaching. KONA. Powder. Part. J. 2016(33), 203–218 (2016). https://doi.org/10.14356/kona.2016001

    Article  CAS  Google Scholar 

  15. Bliznakov, G., Peshev, P.: The preparation of cerium, praseodymium, and neodymium hexaborides. J. Less-Common Met. 7(6), 441–446 (1964). https://doi.org/10.1016/0022-5088(64)90041-4

    Article  CAS  Google Scholar 

  16. Latini, A., Di Pascasio, F., Gozzi, D.: A new synthesis route to light lanthanide borides: borothermic reduction of oxides enhanced by electron beam bombardment. J. Alloys Compd. 346(1–2), 311–313 (2002). https://doi.org/10.1016/S0925-8388(02)00667-9

    Article  CAS  Google Scholar 

  17. Amin, S.S., Li, S.Y., Roth, J.R., Xu, T.T.: Single crystalline alkaline-earth metal hexaboride one-dimensional (1D) nanostructures: synthesis and characterization. Chem. Mater. 21(4), 763–770 (2009). https://doi.org/10.1021/Cm802018e

    Article  CAS  Google Scholar 

  18. Carenco, S., Portehault, D., Boissière, C., Mézailles, N., Sanchez, C.: Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem. Rev. 113(10), 7981–8065 (2013). https://doi.org/10.1021/cr400020d

    Article  CAS  Google Scholar 

  19. Zhang, M., Wang, X., Zhang, X., Wang, P., Xiong, S., Shi, L., Qian, Y.: Direct low-temperature synthesis of RB6 (R=Ce, Pr, Nd) nanocubes and nanoparticles. J. Solid State Chem. 182(11), 3098–3104 (2009). https://doi.org/10.1016/j.jssc.2009.08.032

    Article  CAS  Google Scholar 

  20. Angappan, S., Helan, M., Visuvasam, A., Berchmans, L.J., Ananth, V.: Electrolytic preparation of CaB6 by molten salt technique. Ionics (Kiel). 17(6), 527–533 (2011). https://doi.org/10.1007/s11581-011-0531-9

    Article  CAS  Google Scholar 

  21. Yilmaz, D.; Savaci, U.; Koç, N.; Turan, S. Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels. Ceram. Int. 2017, No. November, 8–13. https://doi.org/10.1016/j.ceramint.2017.11.050.

  22. Zhang, L., Min, G.H., Yu, H.S., Chen, H.M., Feng, G.: The size and morphology of fine CaB6 powder synthesized by nanometer CaCO3 as reactant. Key Eng. Mater. 326–328, 369–372 (2006). https://doi.org/10.4028/www.scientific.net/KEM.326-328.369

    Article  Google Scholar 

  23. Kakiage, M., Shiomi, S., Yanase, I., Kobayashi, H.: Low-temperature synthesis of calcium hexaboride powder via transient boron carbide formation. J. Am. Ceram. Soc. 98(9), 2724–2727 (2015). https://doi.org/10.1111/jace.13771

    Article  CAS  Google Scholar 

  24. Zheng, S.Q., Min, G.H., Zou, Z.D., Yu, H.S., Han, H.D.: Synthesis of calcium hexaboride powder via the reaction of calcium carbonate with boron carbide and carbon. J. Am. Ceram. Soc. 84, 2725–2727 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01083.x

    Article  CAS  Google Scholar 

  25. Makkee, M., Kieboom, A.P.G., van Bekkum, H.: Studies on borate esters III. Borate esters of D-mannitol, D-glucitol, D-fructose and D-glucose in water. Recl. Trav. Chim. Pays-Bas 104, 230–235 (1985)

    Article  CAS  Google Scholar 

  26. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299-303+274 (2004). https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  27. Ang, C., Seeber, A., Wang, K., Cheng, Y.B.: Modification of ZrB2 powders by a sol-gel ZrC precursor-a new approach for ultra high temperature ceramic composites. J. Asian Ceram. Soc. 1(1), 77–85 (2013). https://doi.org/10.1016/j.jascer.2013.03.004

    Article  Google Scholar 

  28. Yilmaz, D., Savaci, U., Koç, N., Turan, S.: Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels. Ceram. Int. 44(3), 2976–2981 (2018). https://doi.org/10.1016/j.ceramint.2017.11.050

    Article  CAS  Google Scholar 

  29. Woźny, P., Runowski, M., Lis, S.: Influence of boric acid/Sr2+ ratio on the structure and luminescence properties (colour tuning) of nano-sized, complex strontium borates doped with Sm2+ and Sm3+ ıons. Opt. Mater. (Amst) 83(February), 245–251 (2018). https://doi.org/10.1016/j.optmat.2018.06.027

    Article  CAS  Google Scholar 

  30. Cahill, J.T., Graeve, O.A.: Hexaborides: a review of structure, synthesis and processing. J. Mater. Res. Technol. 8(6), 6321–6335 (2019). https://doi.org/10.1016/j.jmrt.2019.09.041

    Article  CAS  Google Scholar 

  31. Samsonov, G.V., Paderno, Y.B., Fomenko, V.S.: Hexaborides of the rare-earth metals. Sov. Powder Metall. Met. Ceram. 2(6), 449–454 (1963). https://doi.org/10.1007/BF00774188

    Article  Google Scholar 

  32. Zheng, S.Q., Da Zou, Z., Min, G.H., Yu, H.S., De Han, J., Wang, W.T.: Synthesis of strontium hexaboride powder by the reaction of strontium carbonate with boron carbide and carbon. J. Mater. Sci. Lett. 21(4), 313–315 (2002). https://doi.org/10.1023/A:1017940307487

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Eskisehir Osmangazi University-Scientific Research Fund (ESOGU BAP) under the project 2016–1072.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Yilmaz.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, D., Koc, N. Synthesis of strontium hexaboride via condensed precursor technique: in situ formation of B4C as reductant. J Aust Ceram Soc 58, 259–265 (2022). https://doi.org/10.1007/s41779-021-00659-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00659-1

Keywords

Navigation