Skip to main content
Log in

New cobalt phthalocyanine–graphene oxide hybrid nanomaterial prepared by strong π–π interactions

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, a novel hybrid nanomaterial was obtained by interaction of cobalt phthalocyanine (CoPc) derivative on the surface of graphene oxide (GO) producing a CoPc-GO supermolecular system in which interaction is occurred by the π–π stacking. The CoPc-GO hybrid was prepared in a much shorter time than the examples in the literature, and it was observed that this nanomaterial was quite stable at room conditions and during dilution. The obtained hybrid nanomaterial was analyzed by scanning electron microscopy (SEM) and spectroscopic methods. Spectroscopic measurements indicate that immediate intermolecular interactions are occurring during the mixing of GO and CoPc. SEM studies show that CoPc successfully interacts with GO. Significant color changes were also observed by the addition of GO solutions at different concentrations on the CoPc solution. Also, we determined the optical band gap of the CoPc-GO nanohybrid using UV–Vis spectroscopy technique. It was also determined that the stable CoPc-GO hybrid, which can be prepared very quickly and easily, has the potential to be used in optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen, B., Liu, M., Zhang, L.M., Huang, J., Yao, J.L., Zhang, Z.J.: Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 21, 7736–7741 (2011)

    Article  CAS  Google Scholar 

  2. Yang, K., Wan, J.M., Zhang, S.A., Zhang, Y.J., Lee, S.T., Liu, Z.A.: In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 5, 516–522 (2011)

    Article  CAS  Google Scholar 

  3. Zhang, Q., Li, W.W., Kong, T., Su, R.G., Li, N., Song, Q., Tang, M.L., Liu, L.W., Cheng, G.S.: Tailoring the interlayer interaction between doxorubicin-loaded graphene oxide nanosheetsby controlling the drug content. Carbon. 51, 164–172 (2013)

    Article  Google Scholar 

  4. Qin, X.C., Guo, Z.Y., Liu, Z.M., Zhang, W., Wan, M.M., Yang, B.W.: Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J. Photochem. Photobiol. B. 120, 156–162 (2013)

    Article  CAS  Google Scholar 

  5. Eda, G., Chhowalla, M.: Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010)

    Article  CAS  Google Scholar 

  6. Li, X.L., Zhang, G.Y., Bai, X.D., Sun, X.M., Wang, X.R., Wang, E.G., Dai, H.J.: Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)

    Article  CAS  Google Scholar 

  7. Kim, F., Cote, L.J., Huang, J.X.: Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22, 1954–1958 (2010)

    Article  CAS  Google Scholar 

  8. Park, S., Ruoff, R.S.: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009)

    Article  CAS  Google Scholar 

  9. Bissessur, R., Scully, S.F.: Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics. 178, 877–882 (2007)

    Article  CAS  Google Scholar 

  10. Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir. 24, 10560–10564 (2008)

    Article  CAS  Google Scholar 

  11. Compton, O.C., Nguyen, S.T.: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small. 6, 711–723 (2010)

    Article  CAS  Google Scholar 

  12. Dong, L.F., Gari, R.R.S., Li, Z., Craig, M.M., Hou, S.F.: Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon. 48, 781–787 (2010)

    Article  CAS  Google Scholar 

  13. Chang, H.X., Lv, X.J., Zhang, H., Li, J.H.: Quantum dots sensitized graphene: ın situ growth and application in photoelectrochemical cells. Electrochem. Commun. 12, 483–487 (2010)

    Article  CAS  Google Scholar 

  14. Mohanty, N., Berry, V.: Graphene-based single-bacterium resolution biodevice and dna transistor: ınterfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469–4476 (2008)

    Article  CAS  Google Scholar 

  15. Paek, S.M., Yoo, E., Honma, I.: Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9, 72–75 (2009)

    Article  CAS  Google Scholar 

  16. Liu, H., Gao, J., Xue, M.Q., Zhu, N., Zhang, M.N., Cao, T.B.: Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir. 25, 12006–12010 (2009)

    Article  CAS  Google Scholar 

  17. Seger, B., Kamat, P.V.: Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J. Phys. Chem. C. 113, 7990–7995 (2009)

    Article  CAS  Google Scholar 

  18. Li, Y.M., Tang, L.H., Li, J.H.: Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem. Commun. 11, 846–849 (2009)

    Article  Google Scholar 

  19. Li, Y.J., Gao, W., Ci, L.J., Wang, C.M., Ajayan, P.M.: Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 48, 1124–1130 (2010)

    Article  CAS  Google Scholar 

  20. Yao, J., Shen, X.P., Wang, B., Liu, H.K., Wang, G.X.: In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11, 1849–1852 (2009)

    Article  CAS  Google Scholar 

  21. Wang, Y., Lu, J., Tang, L.H., Chang, H.X., Li, J.H.: Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and ıts selective sensing for glutathione from thiol-containing compounds. Anal. Chem. 81, 9710–9715 (2009)

    Article  CAS  Google Scholar 

  22. Dong, H.F., Gao, W.C., Yan, F., Ji, H.X., Ju, H.X.: Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511–5517 (2010)

    Article  CAS  Google Scholar 

  23. Wang, K., Liu, Q., Wu, X.Y., Guan, Q.M., Li, H.N.: Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta. 82, 372–376 (2010)

    Article  CAS  Google Scholar 

  24. Stankovich, S., Dikin, D.A., Compton, O.C., Dommett, G.H.B., Ruoff, R.S., Nguyen, S.T.: Systematic post-assembly modification of graphene oxide paper with primary alkylamines. Chem. Mater. 22, 4153–4157 (2010)

    Article  CAS  Google Scholar 

  25. Su, Q., Pang, S.P., Alijani, V., Li, C., Feng, X.L., Müllen, K.: Composites of graphene with large aromatic molecules. Adv. Mater. 21, 3191–3195 (2009)

    Article  CAS  Google Scholar 

  26. Tan, L., Zhou, K.G., Zhang, Y.H., Wang, H.X., Wang, X.D., Guo, Y.F., Zhang, H.L.: Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochem. Commun. 12, 557–560 (2010)

    Article  CAS  Google Scholar 

  27. Stankovich, S., Piner, R.D., Chen, X.Q., Wu, N.Q., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006)

    Article  CAS  Google Scholar 

  28. Zu, S.Z., Han, B.H.: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C. 113, 13651–13657 (2009)

    Article  CAS  Google Scholar 

  29. Li, G.L., Liu, G., Li, M., Wan, D., Neoh, K.G., Kang, E.T.: Organo- and water-dispersible graphene oxide−polymer nanosheets for organic electronic memory and gold nanocomposites. J. Phys. Chem. C. 114, 12742–12748 (2010)

    Article  CAS  Google Scholar 

  30. Wang, Y., Li, Z.H., Hu, D.H., Lin, C.T., Li, J.H., Lin, Y.H.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274–9276 (2010)

    Article  CAS  Google Scholar 

  31. Liu, Y., Yu, D.S., Zeng, C., Miao, Z.C., Dai, L.M.: Biocompatible graphene oxide-based glucose biosensors. Langmuir. 26, 6158–6160 (2010)

    Article  CAS  Google Scholar 

  32. Liu, Z.F., Jiang, L.H., Galli, F., Nederlof, I., Olsthoorn, R.C.L., Lamers, G.E.M., Oosterkamp, T.H., Abrahams, J.P.: A Graphene oxide˙streptavidin complex for biorecognition – towards affinity purification. Adv. Funct. Mater. 20, 2857–2865 (2010)

    Article  CAS  Google Scholar 

  33. Liu, Z.B., Xu, Y.F., Zhang, X.Y., Zhang, X.L., Chen, Y.S., Tian, J.G.: Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B. 113, 9681–9686 (2009)

    Article  CAS  Google Scholar 

  34. Xu, Y.F., Liu, Z.B., Zhang, X.L., Wang, Y., Tian, J.G., Huang, Y., Ma, Y.F., Zhang, X.Y., Chen, Y.S.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009)

    Article  CAS  Google Scholar 

  35. Karousis, N., Economopoulos, S.P., Sarantopoulou, E., Tagmatarchis, N.: Porphyrin counter anion in imidazolium-modified graphene-oxide. Carbon. 48, 854–860 (2010)

    Article  CAS  Google Scholar 

  36. Yang, H.F., Shan, C.S., Li, F.H., Han, D.X., Zhang, Q.X., Niu, L.: Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. 26, 3880–3882 (2009)

  37. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.F., Tour, J.M.: Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008)

    Article  CAS  Google Scholar 

  38. Söylemez, N., Yabaş, E., ŞahinBölükbaşı, S., Sülü, M.: Antioxidant activities of the new tetrasubstituted metal-free, Zn(II) and Co(II) monophthalocyanines. J. Porphyrins Phthalocyanines. 22, 233–242 (2018)

    Article  Google Scholar 

  39. Durmuş, M., Nyokong, T.: Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron. 26, 2767–2776 (2007)

    Article  Google Scholar 

  40. Kobayashi, N., Lever, A.B.: Cation- or solvent-ınduced supermolecular phthalocyanine formation: crown ether substituted phthalocyanines. J. Am. Chem. Soc. 109, 7433–7441 (1987)

    Article  CAS  Google Scholar 

  41. Cherian, R.C., Menon, C.S.: Preparation and characterization of thermally evaporated titanium phthalocyanine dichloride thin films. J. Phys. Chem. Solids. 69, 2858–2863 (2008)

    Article  CAS  Google Scholar 

  42. Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Subbarayan, A., Ascencio, J.A., Canizal, G., Sebastian, P.J., Chavez, J.A., Perez, R.: Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A. 77, 383–389 (2003)

    Article  CAS  Google Scholar 

  43. Senthilarasu, S., Sathyamoorthy, R., Lee, S.H., Velumani, S.: Characterization of zinc-phthalocyanine–CdS composite thin films for photovoltaic applications. Vacuum. 84, 1212–1215 (2010)

    Article  CAS  Google Scholar 

  44. Timoumi, A., Wederni, M.A., Bouguila, N., Jamoussi, B., AL Turkestani, M.K., Chakroun, R., Al-Mur, B.: Electrical impedance spectroscopy study of unsubstituted palladium (II) phthalocyanine. Synt. Metal. 272, 116659–116666 (2021)

    Article  CAS  Google Scholar 

  45. Kannan, R.R., Nelson, P.I., Rajesh, S., Selvan, T.P., Mohan, A., Vidhya, B., Arivazhagan, D.N.: Curtailed recombination rate and fast carrier transport in ZnPc/GaAs/ZnPc stacked hybrid structure. Optic. Mater. 85, 287–294 (2018)

    Article  CAS  Google Scholar 

  46. Hamam, K.J., Alomari, M.I.: A study of the optical band gap of zinc phthalocyanine nanoparticles using UV-Vis spectroscopy and DFT function. Appl. Nanosci. 7, 261–268 (2017)

    Article  CAS  Google Scholar 

  47. El Nhass, M.M., Sollman, B.S., Metwally, B.S., Farid, A.M., Farag, A.A.M., El Shazly, A.A.: Optical properties of evaporated iron phthalocyanine (FePc) thin films. J. Opt. 30, 121–129 (2001)

    Article  Google Scholar 

  48. Kim, H.J., Kim, J.W., Lee, H.H., Lee, B., Kim, J.J.: Initial growth mode, nanostructure, and molecular stacking of a ZnPc:C60 bulk heterojunction. Adv. Funct. Mater. 22, 4244–4248 (2012)

    Article  CAS  Google Scholar 

  49. Mobtakeri, S., Akaltun, Y., Özer, A., Kılıç, M., Tüzemen, E.Ş, Gür, E.: Gallium oxide films deposition by RF magnetron sputtering; a detailed analysis on the effects of deposition pressure and sputtering power and annealing. Ceram. Int. 47, 1721–1727 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In this study, the laboratory facilities of the Advanced Technology Application and Research Center (CÜTAM) of Sivas Cumhuriyet University were used. The authors wish to thank Dr. Ali ÖZER for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Yabaş.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabaş, E. New cobalt phthalocyanine–graphene oxide hybrid nanomaterial prepared by strong π–π interactions. J Aust Ceram Soc 58, 63–70 (2022). https://doi.org/10.1007/s41779-021-00656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00656-4

Keywords

Navigation