Skip to main content
Log in

Electrophoretic deposition of biocompatible composite coatings containing hydroxyapatite, alumina, and yttria-stabilized zirconia from iodine-stabilized acetone/isopropanol suspensions

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In the present study, a biocompatible coating containing hydroxyapatite, alumina, and yttria-stabilized zirconia was deposited on the surface of titanium substrates by electrophoretic deposition method (EPD) and the reaction bonding process. The coating procedure was carried out using an electrical power supply device and a suspension of hydroxyapatite, aluminum, and yttria-stabilized zirconia nano-powders in isopropanol-acetone solvent (1:1). Iodine was used as a stabilizer. The electrical conductivity, pH, zeta potential, and mobility of the suspension were measured as a function of the iodine stabilizer concentration. The optimum amount of iodine was 0.6 g/l. The particle size distribution of the powders was measured at the optimal iodine concentration. The deposition was conducted at different voltages and durations, where voltage of 10 V and the deposition duration of 120 s led to the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gurappa, I.: Development of appropriate thickness ceramic coatings on 316 L stainless steel for biomedical applications. Surf. Coat. Technol. 161, 70–78 (2002)

    Article  CAS  Google Scholar 

  2. Yeh, J.-W., Lin, S.-J., Chin, T.-S., Gan, J.-Y., Chen, S.-K., Shun, T.-T., et al.: Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. and Mater. Trans. A. 35, 2533–2536 (2004)

    Article  Google Scholar 

  3. Meischel, M., Hörmann, D., Draxler, J., Tschegg, E.K., Eichler, J., Prohaska, T., et al.: Bone-implant degradation and mechanical response of bone surrounding Mg-alloy implants. J. Mech. Behav. Biomed. Mater. 71, 307–313 (2017)

    Article  CAS  Google Scholar 

  4. Awad, N.K., Edwards, S.L., Morsi, Y.S.: A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater. Sci. Eng., C 76, 1401–1412 (2017)

    Article  CAS  Google Scholar 

  5. Revathi, A., Borrás, A.D., Muñoz, A.I., Richard, C., Manivasagam, G.: Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Mater. Sci. Eng., C 76, 1354–1368 (2017)

    Article  CAS  Google Scholar 

  6. electrochemical characterisation of corrosion phenomena: T. Sridhar, S. Vinodhini, U. Kamachi Mudali, B. Venkatachalapathy, and K. Ravichandran, Load-bearing metallic implants. Mater. Technol. 31, 705–718 (2016)

    Google Scholar 

  7. Huang, C.-H., Chen, R.-S., Yoshimura, M.: Direct bioactive ceramics coating via reactive growing integration layer method on α-Ti-alloy. Mater. Sci. Eng., C 76, 1216–1223 (2017)

    Article  CAS  Google Scholar 

  8. Bose, S., Saha, S.K.: Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater. 15, 4464–4469 (2003)

    Article  CAS  Google Scholar 

  9. Banerjee, A., Bandyopadhyay, A., Bose, S.: Hydroxyapatite nanopowders: synthesis, densification and cell–materials interaction. Mater. Sci. Eng., C 27, 729–735 (2007)

    Article  CAS  Google Scholar 

  10. Pardun, K., Treccani, L., Volkmann, E., Streckbein, P., Heiss, C., Destri, G.L., et al.: Mixed zirconia calcium phosphate coatings for dental implants: tailoring coating stability and bioactivity potential. Mater. Sci. Eng., C 48, 337–346 (2015)

    Article  CAS  Google Scholar 

  11. Fu, L., Khor, K.A., Lim, J.P.: Yttria stabilized zirconia reinforced hydroxyapatite coatings. Surf. Coat. Technol. 127, 66–75 (2000)

    Article  CAS  Google Scholar 

  12. Wang, J., Huang, C., Wan, Q., Chen, Y., Chao, Y.: Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique. Surf. Coat. Technol. 204, 2576–2582 (2010)

    Article  CAS  Google Scholar 

  13. Mohseni, E., Zalnezhad, E., Bushroa, A.R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: a review paper. Int. J. Adhes. Adhes. 48, 238–257 (2014)

    Article  CAS  Google Scholar 

  14. Kim, H.-W., Koh, Y.-H., Li, L.-H., Lee, S., Kim, H.-E.: Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol–gel method. Biomaterials 25, 2533–2538 (2004)

    Article  CAS  Google Scholar 

  15. Domínguez-Trujillo, C., Peón, E., Chicardi, E., Pérez, H., Rodríguez-Ortiz, J.A., Pavón, J., et al.: Sol-gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf. Coat. Technol. 333, 158–162 (2018)

    Article  Google Scholar 

  16. Yoshinari, M., Ohtsuka, Y., Dérand, T.: Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. Biomaterials 15, 529–535 (1994)

    Article  CAS  Google Scholar 

  17. Ohtsuka, Y., Matsuura, M., Chida, N., Yoshinari, M., Sumii, T., Dérand, T.: Formation of hydroxyapatite coating on pure titanium substrates by ion beam dynamic mixing. Surf. Coat. Technol. 65, 224–230 (1994)

    Article  CAS  Google Scholar 

  18. Hu, C., Yu, L., Wei, M.: Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam. Appl. Surf. Sci. 444, 590–597 (2018)

    Article  CAS  Google Scholar 

  19. Habibovic, P., Barrere, F., Van Blitterswijk, C.A., de Groot, K., Layrolle, P.: Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 85, 517–522 (2002)

    Article  CAS  Google Scholar 

  20. Qi, Y., Mai, S., Ye, Z., Aparicio, C.: Biomimetic fabrication and characterization of collagen/strontium hydroxyapatite nanocomposite, Materials Letters, 127982 (2020)

  21. Li, T., Lee, J., Kobayashi, T., Aoki, H.: Hydroxyapatite coating by dipping method, and bone bonding strength. J. Mater. Sci. - Mater. Med. 7, 355–357 (1996)

    Article  CAS  Google Scholar 

  22. Erdem, U., Dogan, M., Metin, A.U., Baglar, S., Turkoz, M.B., Turk, M., et al.: Hydroxyapatite-based nanoparticles as a coating material for the dentine surface: an antibacterial and toxicological effect. Ceram. Int. 46, 270–280 (2020)

    Article  CAS  Google Scholar 

  23. Kuroda, K., Ichino, R., Okido, M., Takai, O.: Hydroxyapatite coating on titanium by thermal substrate method in aqueous solution. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 59, 390–397 (2002)

    Article  CAS  Google Scholar 

  24. Sukhodub, L.F., Sukhodub, L.B., Simka, W., Kumeda, M.: Hydroxyapatite and brushite coatings on plasma electrolytic oxidized Ti6Al4V alloys obtained by the thermal substrate deposition method. Mater. Lett. 250, 163–166 (2019)

    Article  CAS  Google Scholar 

  25. Hahn, B.-D., Lee, J.-M., Park, D.-S., Choi, J.-J., Ryu, J., Yoon, W.-H., et al.: Mechanical and in vitro biological performances of hydroxyapatite–carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 5, 3205–3214 (2009)

    Article  CAS  Google Scholar 

  26. Jami, H., Jabbarzadeh, A.: Ultrafast thermomechanical effects in aerosol deposition of hydroxyapatite nanoparticles on a titanium substrate, Surface and Coatings Technology, 382, 125173 (2020)

  27. Tsui, Y., Doyle, C., Clyne, T.: Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials 19, 2015–2029 (1998)

    Article  CAS  Google Scholar 

  28. Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 58, 570–592 (2001)

    Article  CAS  Google Scholar 

  29. Wang, D., Chen, C., Ma, J., Zhang, G.: In situ synthesis of hydroxyapatite coating by laser cladding. Colloids Surf., B 66, 155–162 (2008)

    Article  CAS  Google Scholar 

  30. Marin, E., Zanocco, M., Boschetto, F., Santini, M., Zhu, W., Adachi, T., et al.: Silicon nitride laser cladding: a feasible technique to improve the biological response of zirconia, Materials & Design, 108649 (2020)

  31. Wang, C., Lin, J.C., Ju, C.-P., Ong, H., Chang, R.P.: Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate. Biomaterials 18, 1331–1338 (1997)

    Article  CAS  Google Scholar 

  32. Cao, J., Lian, R., Jiang, X.: Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility, Applied Surface Science, 146069 (2020)

  33. O’Flynn, K.P., Stanton, K.T.: Laser sintering and crystallization of a bioactive glass-ceramic. J. Non-Cryst. Solids 360, 49–56 (2013)

    Article  CAS  Google Scholar 

  34. Bulina, N. V., Titkov, A. I., Baev, S. G., Makarova, S. V., Khusnutdinov, V. R., Bessmeltsev, V. P., et al.: Laser sintering of hydroxyapatite for potential fabrication of bioceramic scaffolds, Materials Today: Proceedings (2020)

  35. Albayrak, O., El-Atwani, O., Altintas, S.: Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition. Surf. Coat. Technol. 202, 2482–2487 (2008)

    Article  CAS  Google Scholar 

  36. Wei, M., Ruys, A., Swain, M., Kim, S., Milthorpe, B., Sorrell, C.: Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals. J. Mater. Sci. - Mater. Med. 10, 401–409 (1999)

    Article  CAS  Google Scholar 

  37. Pang, X., Zhitomirsky, I.: Electrophoretic deposition of composite hydroxyapatite-chitosan coatings. Mater. Charact. 58, 339–348 (2007)

    Article  CAS  Google Scholar 

  38. Singh, S., Singh, G., Bala, N.: Electrophoretic deposition of hydroxyapatite-iron oxide-chitosan composite coatings on Ti–13Nb–13Zr alloy for biomedical applications, Thin Solid Films, 697, 137801 (2020)

  39. Ma, J., Liang, C., Kong, L., Wang, C.: Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. J. Mater. Sci. - Mater. Med. 14, 797–801 (2003)

    Article  CAS  Google Scholar 

  40. Xiao, X.F., Liu, R.F.: Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater. Lett. 60, 2627–2632 (2006)

    Article  CAS  Google Scholar 

  41. Mondragon-Cortez, P., Vargas-Gutierrez, G.: Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Mater. Lett. 58, 1336–1339 (2004)

    Article  CAS  Google Scholar 

  42. Meng, X., Kwon, T.Y., Yang, Y., Ong, J.L., Kim, K.H.: Effects of applied voltages on hydroxyapatite coating of titanium by electrophoretic deposition. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 78, 373–377 (2006)

    Google Scholar 

  43. Meng, X., Kwon, T.-Y., Kim, K.-H.: Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dent. Mater. J. 27, 666–671 (2008)

    Article  CAS  Google Scholar 

  44. Pawlik, A., Rehman, M.A.U., Nawaz, Q., Bastan, F.E., Sulka, G.D., Boccaccini, A.R.: Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochim. Acta 307, 465–473 (2019)

    Article  CAS  Google Scholar 

  45. Wei, M., Ruys, A., Milthorpe, B., Sorrell, C., Evans, J.: Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J. Sol-Gel. Sci. Technol. 21, 39–48 (2001)

    Article  CAS  Google Scholar 

  46. Yen, S., Chiou, S., Wu, S., Chang, C., Lin, S., Lin, C.: Characterization of electrolytic HA/ZrO2 double layers coatings on Ti–6Al–4V implant alloy. Mater. Sci. Eng., C 26, 65–77 (2006)

    Article  CAS  Google Scholar 

  47. Farnoush, H., Rezaei, Z.: Effect of suspension stability on bonding strength and electrochemical behavior of electrophoretically deposited HA–YSZ nanostructured composite coatings. Ceram. Int. 43, 11885–11897 (2017)

    Article  CAS  Google Scholar 

  48. Mohandoss, S., Sureshkumar, S., Balasubramani, V., Venkatachalapathy, B., Sridhar, T.: Bioinert nano yttria stabilized zirconia coatings on 316L SS for dental applications. J. Ceram. Process. Res 18, 313–319 (2017)

    Google Scholar 

  49. Wu, Z.-J., He, L.-P., Chen, Z.-Z.: Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating on titanium. Transactions of Nonferrous Metals Society of China 16, 259–266 (2006)

    Article  CAS  Google Scholar 

  50. Karimi, E., Khalil-Allafi, J., Khalili, V.: Electrophoretic deposition of double-layer HA/Al composite coating on NiTi. Mater. Sci. Eng., C 58, 882–890 (2016)

    Article  CAS  Google Scholar 

  51. Askari, N., Yousefpour, M., Rajabi, M.: Determination of optimum Al content in HA-Al2O3 nanocomposites coatings prepared by electrophoretic deposition on titanium substrate. Int. J. Appl. Ceram. Technol. 15, 970–979 (2018)

    Article  CAS  Google Scholar 

  52. Zhao, X., Zhang, W., Wang, Y., Liu, Q., Yang, J., Zhang, L., et al.: Fabrication of Al2O3 by anodic oxidation and hydrothermal synthesis of strong-bonding hydroxyapatite coatings on its surface. Appl. Surf. Sci. 470, 959–969 (2019)

    Article  CAS  Google Scholar 

  53. Farnoush, H., Mohandesi, J.A., Çimenoğlu, H.: Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. J. Mech. Behav. Biomed. Mater. 46, 31–40 (2015)

    Article  CAS  Google Scholar 

  54. Azari, R., Rezaie, H., Khavandi, A.: Investigation of functionally graded HA-TiO2 coating on Ti–6Al–4V substrate fabricated by sol-gel method. Ceram. Int. 45, 17545–17555 (2019)

    Article  CAS  Google Scholar 

  55. Vinodhini, S., Sridhar, T.: TiO 2 rutile phase formed interlayers by sintering monophasic bioceramics for biomedical applications. New J. Chem. 43, 7307–7319 (2019)

    Article  CAS  Google Scholar 

  56. Abidi, S.S.A., Murtaza, Q.: Synthesis and characterization of nanohydroxyapatite powder using wet chemical precipitation reaction. UPB Sci Bull B 75, 3–12 (2013)

    CAS  Google Scholar 

  57. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007)

    Article  CAS  Google Scholar 

  58. Manonmani, R., Sridhar, T.: Sintering temperature effects on nano triphasic bioceramic composite coated 316L SS for corrosion resistance, adhesion strength, and cell proliferation on implants. J. Mater. Res. 35, 580–590 (2020)

    Article  CAS  Google Scholar 

  59. Barthel, J., Gores, H.-J., Schmeer, G., Wachter, R.: Non-aqueous electrolyte solutions in chemistry and modern technology, in Physical and inorganic chemistry, ed: Springer, 1983, pp. 33–144.

  60. Guo, F., Javed, A., Shapiro, I.P., Xiao, P.: Effect of HCl concentration on the sintering behavior of 8 mol% Y2O3 stabilized ZrO2 deposits produced by electrophoretic deposition (EPD). J. Eur. Ceram. Soc. 32, 211–218 (2012)

    Article  Google Scholar 

  61. Farrokhi-Rad, M., Shahrabi, T.: Effect of triethanolamine on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7007–7013 (2013)

    Article  CAS  Google Scholar 

  62. Honary, S., Zahir, F.: Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop. J. Pharm. Res. 12, 255–264 (2013)

    Google Scholar 

  63. Farnoush, H., Mohandesi, J.A., Fatmehsari, D.H., Moztarzadeh, F.: Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4V substrates. Ceram. Int. 38, 4885–4893 (2012)

    Article  CAS  Google Scholar 

  64. Loghmani, S.K., Farrokhi-Rad, M., Shahrabi, T.: Effect of polyethylene glycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7043–7051 (2013)

    Article  Google Scholar 

  65. Ryu, J., No, K., Kim, Y., Park, E., Hong, S.: Synthesis and application of ferroelectric poly (vinylidene fluoride-co-trifluoroethylene) films using electrophoretic deposition. Sci. Rep. 6, 36176 (2016)

    Article  CAS  Google Scholar 

  66. Wang, Y.C., Leu, I.C., Hon, M.H.: Kinetics of electrophoretic deposition for nanocrystalline zinc oxide coatings. J. Am. Ceram. Soc. 87, 84–88 (2004)

    Article  CAS  Google Scholar 

  67. Liu, Y., Chen, O.Y., Wei, C.C., Li, K.: Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes. Desalination 199, 360–362 (2006)

    Article  CAS  Google Scholar 

  68. Stappers, L., Zhang, L., Van der Biest, O., Fransaer, J.: The effect of electrolyte conductivity on electrophoretic deposition. J. Colloid Interface Sci. 328, 436–446 (2008)

    Article  CAS  Google Scholar 

  69. Hu, S., Li, W., Finklea, H., Liu, X.: A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Advances in Colloid and Interface Science 276, 102102 (2020)

    Article  CAS  Google Scholar 

  70. Hu, S., Li, W., Li, W., Zhang, N., Qi, H., Finklea, H., et al.: A study on the electrophoretic deposition of gadolinium doped ceria on polypyrrole coated yttrium stabilized zirconia. J. Colloid Interface Sci. 555, 115–123 (2019)

    Article  CAS  Google Scholar 

  71. Koura, N., Tsukamoto, T., Shoji, H., Hotta, T.: Preparation of various oxide films by an electrophoretic deposition method: a study of the mechanism. Jpn. J. Appl. Phys. 34, 1643 (1995)

    Article  CAS  Google Scholar 

  72. Hu, S., Li, W., Yao, M., Li, T., Liu, X.: Electrophoretic deposition of gadolinium-doped ceria as a barrier layer on yttrium-stabilized zirconia electrolyte for solid oxide fuel cells. Fuel Cells 17, 869–874 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank gratefully Professor Mardali Yousefpour from Faculty of Materials Engineering, Semnan University, University of Semnan, and especially Imam Khomeini International University (IKIU) for preparing major of the facilities which were necessary for doing this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayereh Asgari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, N., Rajabi, M. Electrophoretic deposition of biocompatible composite coatings containing hydroxyapatite, alumina, and yttria-stabilized zirconia from iodine-stabilized acetone/isopropanol suspensions. J Aust Ceram Soc 57, 1479–1488 (2021). https://doi.org/10.1007/s41779-021-00652-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00652-8

Keywords

Navigation