Skip to main content

Advertisement

Log in

Investigation of the effects of varying amount of graphene nanoplatelets’ (GNPs) addition on carbon nanotubes (CNTs) reinforced boron carbide produced by spark plasma sintering

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, monolithic B4C, B4C-CNT, B4C-GNP, and B4C-CNT-GNP composites were prepared by ultrasonic stirrer with the additions of 3.5 vol.% carbon nanotubes (CNTs) and 0–3 vol.% graphene nanoplatelets (GNPs) and produced by spark plasma sintering (SPS) method. Samples are produced at 1600–1650 ℃ sintering temperatures under 40 MPa for 5-min holding time. The effects of GNP addition on the densification behavior, microstructure, and mechanical properties of B4C-CNTs composites were investigated. The sintering temperature was reduced from 1650 to 1600 °C with the addition of CNTs and GNPs separately. Sintering temperature was also 1600 °C for the all B4C-CNT-GNP composites. The relative density value was 96%, 97.2%, and 98.4% for the monolithic B4C, B4C-CNT and B4C-GNP composites, respectively. The highest relative density value was obtained as a 97.9% by B4C-CNT-GNP composites. The hardness value was 30 GPa, 32.1 GPa, and 35.4 GPa for the monolithic B4C, B4C-CNT and B4C-GNP composites, respectively. The highest hardness value was 32.3 GPa for B4C-CNT-GNP composites. There was an increase in fracture toughness of B4C-CNT composites with the addition of the GNP up to 2 vol.%. The highest fracture toughness was obtained as 6.20 MPa‧m1/2 for the sample containing 2 vol.% GNP. Increase in fracture toughness resulted from the pull-out of GNPs, bridging the cracks and changing the direction of the cracks by GNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thevenot, F.: State of the art boron carbide a comprehensive review (1990)

  2. Suri, A.K., Subramanian, C., Sonber, J.K., Ch Murthy, T.S.R.: Synthesis and consolidation of boron carbide: a review. Int. Mater. Rev. 55, 4–38 (2010). https://doi.org/10.1179/095066009X12506721665211

    Article  CAS  Google Scholar 

  3. Rastabi, A.H., Dehcheshmeh, K.A.: TMS, Materials processing and energy materials. 1, 511–521 (2011)

  4. Mashhadi, M., Taheri-Nassaj, E., Sglavo, V.M.: Pressureless sintering of boron carbide. Ceram. Int. 36, 151–159 (2010). https://doi.org/10.1016/j.ceramint.2009.07.034

    Article  CAS  Google Scholar 

  5. Moshtaghioun, B.M., Cumbrera-Hernández, F.L., Gómez-García, D., de Bernardi-Martín, S., Domínguez-Rodríguez, A., Monshi, A., Abbasi, M.H.: Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B 4C). J. Eur. Ceram. Soc. 33, 361–369 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.028

    Article  CAS  Google Scholar 

  6. Sairam, K., Sonber, J.K., Murthy, T.S.R.C., Subramanian, C., Fotedar, R.K., Nanekar, P., Hubli, R.C.: Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int. J. Refract Metal Hard Mater. 42, 185–192 (2014). https://doi.org/10.1016/j.ijrmhm.2013.09.004

    Article  CAS  Google Scholar 

  7. Xu, C., Cai, Y., Flodström, K., Li, Z., Esmaeilzadeh, S., Zhang, G.J.: Spark plasma sintering of B4C ceramics: the effects of milling medium and TiB2 addition. Int. J. Refract Metal Hard Mater. 30, 139–144 (2012). https://doi.org/10.1016/j.ijrmhm.2011.07.016

    Article  CAS  Google Scholar 

  8. Castro, R.H.R., van Benthem, K.: Sintering : mechanisms of convention nanodensification and field assisted processes, Springer (2013)

  9. Olevsky, E., Froyen, L.: Constitutive modeling of spark-plasma sintering of conductive materials. Scripta Mater. 55, 1175–1178 (2006). https://doi.org/10.1016/j.scriptamat.2006.07.009

    Article  CAS  Google Scholar 

  10. Milsom, B.: The effect of CNTs on the sintering behaviour and properties of structural ceramic composites (2013) http://qmro.qmul.ac.uk/jspui/handle/123456789/8367

  11. Rajeswari, K., Hareesh, U.S., Subasri, R., Chakravarty, D., Johnson, R.: Comparative evaluation of spark plasma (SPS), microwave (MWS), two stage sintering (TSS) and conventional sintering (CRH) on the densification and micro structural evolution of fully stabilized zirconia ceramics. Sci. Sinter. 42, 259–267 (2010). https://doi.org/10.2298/SOS1003259R

    Article  CAS  Google Scholar 

  12. Zorzi, J.E., Perottoni, C.A., Da Jornada, J.A.H.: Hardness and wear resistance of B4C ceramics prepared with several additives. Mater. Lett. 59, 2932–2935 (2005). https://doi.org/10.1016/j.matlet.2005.04.047

    Article  CAS  Google Scholar 

  13. Malmal Moshtaghioun, B., Ortiz, A.L., Gómez-García, D., Domínguez-Rodríguez, A., Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition. Journal of the European Ceramic Society 33, 1395–1401 (2013) https://doi.org/10.1016/j.jeurceramsoc.2013.01.018.

  14. Sun, C., Li, Y., Wang, Y., Zhu, L., Jiang, Q., Miao, Y., Chen, X.: Effect of alumina addition on the densification of boron carbide ceramics prepared by spark plasma sintering technique. Ceram. Int. 40, 12723–12728 (2014). https://doi.org/10.1016/j.ceramint.2014.04.121

    Article  CAS  Google Scholar 

  15. Mashhadi, M., Taheri-Nassaj, E., Sglavo, V.M., Sarpoolaky, H., Ehsani, N.: Effect of Al addition on pressureless sintering of B4C. Ceram. Int. 35, 831–837 (2009). https://doi.org/10.1016/j.ceramint.2008.03.003

    Article  CAS  Google Scholar 

  16. Alexander, R., Ravikanth, K.V., Srivastava, A.P., Krishnan, M., Dasgupta, K.: Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Materials Today Communications. 17, 450–457 (2018). https://doi.org/10.1016/j.mtcomm.2018.10.015

    Article  CAS  Google Scholar 

  17. Kovalčíková, A., Sedlák, R., Rutkowski, P., Dusza, J.: Mechanical properties of boron carbide+graphene platelet composites. Ceram. Int. 42, 2094–2098 (2016). https://doi.org/10.1016/j.ceramint.2015.09.139

    Article  CAS  Google Scholar 

  18. Allotropes of carbon and carbon nanotubes, içinde: carbon nanotube reinforced composites: CNR polymer science and technology, Elsevier Inc., 2015: ss. 73–101. https://doi.org/10.1016/B978-1-4557-3195-4.00003-5.

  19. Zainol Abidin, M.S., Herceg, T., Greenhalgh, E.S., Shaffer, M., Bismarck, A.: Enhanced fracture toughness of hierarchical carbon nanotube reinforced carbon fibre epoxy composites with engineered matrix microstructure. Composites Science and Technology 170, 85–92 (2019). https://doi.org/10.1016/j.compscitech.2018.11.017

    Article  CAS  Google Scholar 

  20. Prashantha Kumar, H.G., Anthony Xavior, M., Graphene reinforced metal matrix composite (GRMMC): a review, içinde: Procedia Engineering, Elsevier Ltd, 2014: ss. 1033–1040. https://doi.org/10.1016/j.proeng.2014.12.381.

  21. Zhen, Z., Zhu, H.: Structure and properties of graphene, içinde: Graphene, Elsevier, (2018): ss. 1–12. https://doi.org/10.1016/b978-0-12-812651-6.00001-x.

  22. Tapasztó, O., Tapasztó, L., Lemmel, H., Puchy, V., Dusza, J., Balázsi, C., Balázsi, K.: High orientation degree of graphene nanoplatelets in silicon nitride composites prepared by spark plasma sintering. Ceram. Int. 42, 1002–1006 (2016). https://doi.org/10.1016/j.ceramint.2015.09.009

    Article  CAS  Google Scholar 

  23. Tan, Y., Zhang, H., Peng, S.: Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness. Scripta Mater. 114, 98–102 (2016). https://doi.org/10.1016/j.scriptamat.2015.12.008

    Article  CAS  Google Scholar 

  24. Yavas, B., Sahin, F., Yucel, O., Goller, G.: Effect of particle size, heating rate and CNT addition on densification, microstructure and mechanical properties of B4C ceramics. Ceram. Int. 41, 8936–8944 (2015). https://doi.org/10.1016/j.ceramint.2015.03.167

    Article  CAS  Google Scholar 

  25. Li, Y., Gao, F., Xue, Z., Luan, Y., Yan, X., Guo, Z., Wang, Z.: Synergistic effect of different graphene-CNT heterostructures on mechanical and self-healing properties of thermoplastic polyurethane composites. Mater. Des. 137, 438–445 (2018). https://doi.org/10.1016/j.matdes.2017.10.018

    Article  CAS  Google Scholar 

  26. Li, W., Dichiara, A., Bai, J.: Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 74, 221–227 (2013). https://doi.org/10.1016/j.compscitech.2012.11.015

    Article  CAS  Google Scholar 

  27. Yue, L., Pircheraghi, G., Monemian, S.A., Manas-Zloczower, I.: Epoxy composites with carbon nanotubes and graphene nanoplatelets - dispersion and synergy effects. Carbon 78, 268–278 (2014). https://doi.org/10.1016/j.carbon.2014.07.003

    Article  CAS  Google Scholar 

  28. Chatterjee, S., Nafezarefi, F., Tai, N.H., Schlagenhauf, L., Nüesch, F.A., Chu, B.T.T.: Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50, 5380–5386 (2012). https://doi.org/10.1016/j.carbon.2012.07.021

    Article  CAS  Google Scholar 

  29. Liang, X., Cheng, Q.: Synergistic reinforcing effect from graphene and carbon nanotubes. Composites Communications. 10, 122–128 (2018). https://doi.org/10.1016/j.coco.2018.09.002

    Article  Google Scholar 

  30. Machado, B.F., Marchionni, A., Bacsa, R.R., Bellini, M., Beausoleil, J., Oberhauser, W., Vizza, F., Serp, P.: Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols (2013)

  31. Asiq Rahman, O.S., Sribalaji, M., Mukherjee, B., Laha, T., Keshri, A.K.: Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites. Ceramics International. 44, 2109–2122 (2018). https://doi.org/10.1016/j.ceramint.2017.10.160

    Article  CAS  Google Scholar 

  32. Hayun, S., Paris, V., Dariel, M.P., Frage, N., Zaretzky, E.: Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering. J. Eur. Ceram. Soc. 29, 3395–3400 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.07.007

    Article  CAS  Google Scholar 

  33. Ghasali, E., Sangpour, P., Jam, A., Rajaei, H., Shirvanimoghaddam, K., Ebadzadeh, T.: Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering. 18, 1042–1054 (2018). https://doi.org/10.1016/j.acme.2018.02.006

    Article  Google Scholar 

  34. Yazdani, B., Xia, Y., Ahmad, I., Zhu, Y.: Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 35, 179–186 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.08.043

    Article  CAS  Google Scholar 

  35. Alexander, R., Murthy, T.S.R.C., Ravikanth, K.V., Prakash, J., Mahata, T., Bakshi, S.R., Krishnan, M., Dasgupta, K.: Effect of graphene nano-platelet reinforcement on the mechanical properties of hot pressed boron carbide based composite. Ceram. Int. 44, 9830–9838 (2018). https://doi.org/10.1016/j.ceramint.2018.02.225

    Article  CAS  Google Scholar 

  36. Cividanes, L., Thim, G.P.: Springer briefs in applied sciences and technology Functionalizing graphene and carbon nanotubes a review. Springer (2016)

  37. Sedlák, R., Kovalčíková, A., Múdra, E., Rutkowski, P., Dubiel, A., Girman, V., Bystrický, R., Dusza, J.: Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. J. Eur. Ceram. Soc. 37, 3773–3780 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.061

    Article  CAS  Google Scholar 

  38. Shu, R., Jiang, X., Shao, Z., Sun, D., Zhu, D., Luo, Z.: Fabrication and mechanical properties of MWCNTs and graphene synergetically reinforced Cu–graphite matrix composites. Powder Technol. 349, 59–69 (2019). https://doi.org/10.1016/j.powtec.2019.03.021

    Article  CAS  Google Scholar 

  39. Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 62, 241–302 (2017). https://doi.org/10.1080/09506608.2016.1219481

    Article  CAS  Google Scholar 

  40. Qi, Z., Tan, Y., Zhang, Z., Gao, L., Zhang, C., Tian, J.: Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites. RSC Adv. 8, 38689–38700 (2018). https://doi.org/10.1039/c8ra08312f

    Article  CAS  Google Scholar 

  41. Porwal, H., Tatarko, P., Grasso, S., Khaliq, J., Dlouhý, I., Reece, M.J.: Graphene reinforced alumina nano-composites. Carbon 64, 359–369 (2013). https://doi.org/10.1016/j.carbon.2013.07.086

    Article  CAS  Google Scholar 

  42. Markandan, K., Chin, J.K., Tan, M.T.T.: Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 32, 84–106 (2017). https://doi.org/10.1557/jmr.2016.390

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. H. Sezer for his contribution in SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gultekin Goller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1027 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balci, E., Yavas, B. & Goller, G. Investigation of the effects of varying amount of graphene nanoplatelets’ (GNPs) addition on carbon nanotubes (CNTs) reinforced boron carbide produced by spark plasma sintering. J Aust Ceram Soc 57, 1435–1444 (2021). https://doi.org/10.1007/s41779-021-00635-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00635-9

Keywords

Navigation