Skip to main content

Advertisement

Log in

Effect of ZnO addition on structure,bioactivity, and corrosion protection of mica-fluorapatite glass/glass-ceramic

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The bioactivity and technological properties of glass and glass-ceramics make them candidates to be used as a coating on thin-film porous titanium oxide. So, a series of 80% mica + 20% fluorapatite glass with gradual replacement of 0.5, 1.0, 1.5 mol.% of MgO by ZnO were prepared by a traditional melting method. The structure of the prepared samples was characterized using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscope (SEM), and infrared spectroscopy techniques (FTIR). The gradual substitution of MgO by ZnO decreased the (Tg°C) and (Tc°C) temperatures as DTA analysis indicated. XRD patterns confirmed the crystallization of Na-phlogopite, Na-mica, and foresterite beside fluorapatite as the main crystallized phase, increasing the ZnO content catalyzed the crystallization of willemite, diminished the fluorapatite, and concealed the mica crystallization. FTIR analysis exhibited the characteristic IR features belonging totetrahedral SiO4, BO4, and trigonal BO3 besides essential sharing of phosphate chains. The bioactivity behavior of glass/glass-ceramic samples was examined by utilizing the XRD, FTIR, and SEM techniques after their immersion in simulated body fluid (SBF). The samples provided good mechanical properties by microhardness measurements and good antibacterial behavior to some kinds of bacteria. Electrophoretic deposition of glass and glass-ceramic on the titanium (Ti) surface inhibited its corrosion in SBF. MFZ1G/Ti displayed the highest corrosion resistance among different glass samples, while MFZ3GC presented the most protective coat among the glass-ceramic coat samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Article  CAS  Google Scholar 

  2. Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed MaterRes A. 102, 254–274 (2014)

    Article  CAS  Google Scholar 

  3. Baino, F., Novajra, G., Miguez-Pacheco, V., Boccaccini, A.R., Vitale-brovarone, C.: bioactive glasses: special applications outside the skeletal system. J. Non Cryst. Solids. 432, 15–30 (2016)

    Article  CAS  Google Scholar 

  4. Yun-Zhi, F., Ya-chong, W., Yan-ni, T., Yong, L., Qi-jun, X., Xiao-Xian, S.: Bioactivity of mica/patite glass ceramics. Trans. Nonferrous Met. Soc. Chin. 17, 828–831 (2007)

    Article  Google Scholar 

  5. Liu, Y., Sheng, X., Dan, X., Xiang, Q.: Preparation of mica/apatite glass-ceramics biomaterialsMaterials. Science and Engineering C. 26, 1390–1394 (2006)

    Article  CAS  Google Scholar 

  6. Mohammed, M.T., Khan, Z.A., Siddiquee, A.N.: Surface modifications of titanium materials for developing corrosion behavior in human body environment: A Review. Procedia Mater. Sci. 6, 1610–1618 (2014)

  7. Vahdat, S.E., Pournaghi, A.: Optimization of bone implant selection with price analysis. Adv Mater Manuf Charact. 3, 37–46 (2013)

  8. Ghosh, S., Dandapat, N., Balla, V.K.: Preparation and in vitro characterization of fluroapatite based bioactive glass-ceramics for biomedical applications. Materials Today: Proceedings. 2, 1326–1331 (2015)

    CAS  Google Scholar 

  9. Fayad, A.M., Fathi, A.M., El-Beih, A.A., Taha, M.A., Abdel-Hameed, S.A.M.: Correlation between antimicrobial activity and bioactivity of Na-mica and Na-mica/fluorapatite glass and glass-ceramics and their corrosion protection of titanium in simulated body fluid. J Mater Eng Perform. 28(9), 5661–5673 (2019)

    Article  CAS  Google Scholar 

  10. Al-Wafia, R., Elderaa, S.S., Hamzawy, E.M.A.: Characterization and in vitro bioactivity study of a new glass ceramic from mica/apatite glass mixtures. J. Mater. Res. Technol. 9, 7558–7569 (2020)

    Article  CAS  Google Scholar 

  11. Xiang, Q., Liu, Y., Sheng, X., Dan, X.: Preparation of mica-based glass-ceramics with needle-like fluorapatite. Dent. Mater. 23, 251–258 (2007)

    Article  CAS  Google Scholar 

  12. Kokubo, T.: Bioactive glass ceramics: properties and applications. Biomaterials. 12, 155 (1991)

    Article  CAS  Google Scholar 

  13. Vogel, W., Holand, W.: Development, structure, properties and application of glass-ceramics for medicine. J. Non Cryst. Solids. 123, 349–353 (1990)

    Article  CAS  Google Scholar 

  14. Saranti, A., Koutselas, I., Karakassides, M.A.: Bioactive glasses in the system CaO–B2O3–P2O5: preparation. J. Non Cryst. Solids. 352, 390–398 (2006)

    Article  CAS  Google Scholar 

  15. Lin, D.Y., Wang, X.X.: Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surf. Coat. Technol. 204, 3205–3213 (2010)

    Article  CAS  Google Scholar 

  16. Fathi, A.M., Ahmed, M.K., Afifi, M., Menazea, A.A., Uskoković, V.: Taking hydroxyapatite-coated titanium implants two steps forward: surface modification using graphene mesolayers and a hydroxyapatite-reinforced polymeric scaffold. ACS Biomater Sci. Eng. 7(1), 360–372 (2021)

    Article  CAS  Google Scholar 

  17. Fathi, A.M., Abd El-Hamid, H.K., Radwan, M.M.: Preparation and characterization of nano-tetracalcium phosphate coating on titanium substrate. Int. J. Electrochem. Sci. 11, 3164–3178 (2016)

    Article  CAS  Google Scholar 

  18. Fathi, A.M., Mandor, H.S., Abd El-Hamid, H.K.: Corrosion protection of nano-biphasic calcium phosphate coating on titanium substrate. Curr Nanosci. 16(5), 779–792 (2020)

    Article  CAS  Google Scholar 

  19. Garai, M., Sasmal, N., Molla, A.R., Karmakar, B.: Structural effects of Zn+2/Mg+2 ratios on crystallization characteristics and microstructure of fluorophlogopite mica-containing glass-ceramics. Solid State Sci. 44, 10–21 (2015)

    Article  CAS  Google Scholar 

  20. Hamzawy, E.M.A., Darwish, H.: Crystallization of sodium fluormica Na (Mg, Zn, Ca)2.5 Si4O10F2 glasses. Mater. Chem. Phys. 71, 70 (2001)

    Article  CAS  Google Scholar 

  21. Salman, S.M., Darwish, H., Mahdy, E.A.: The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics. Mater. Chem. Phys. 112, 945 (2008)

    Article  CAS  Google Scholar 

  22. Perrotta, A.J., Garland, T.J.: Low temperature synthesis of zinc-phlogopite. Am. Mineral. 60, 152 (1975)

    CAS  Google Scholar 

  23. Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R.R., Ferreira, J.M.F.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B. 1, 3073 (2013)

    Article  CAS  Google Scholar 

  24. Hallmann, L., Ulmer, P., Kern, M.: Effect of microstructure on the mechanical properties of lithiumdisilicate glass-ceramic. J. Mech. Behav. Biomed. Mater. 82, 355–370 (2018)

    Article  CAS  Google Scholar 

  25. Uno, T., Kasuga, T., Nakayama, S.: High strength mica-containing glass-ceramics. J Am CeramSoc. 74, 3139–3141 (1991)

    Article  CAS  Google Scholar 

  26. Afifi, M., Ahmed, M.K., Fathi, A.M.: VukUskoković, Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Int. J. Pharm. 585, 119502 (2020)

    Article  CAS  Google Scholar 

  27. Abdel-Hameed, S.A.M., El-Kady, A.M., Marzouk, M.A.: Magnetic glass ceramics for sustained 5-fluorouracil delivery: Characterization and evaluation of drug release kinetics. Mater. Sci. Eng. C. 44(1), 293–309 (2014)

    Article  CAS  Google Scholar 

  28. Abdel-Hameed, S.A.M., Marzouk, M.A., Farag, M.M.: Effect of P2O5 and MnO2 on crystallization of magnetic glass ceramics. J Adv Res. 5, 543–550 (2014)

    Article  CAS  Google Scholar 

  29. Liu, Y., Xiang, Q., Tan, Y., Sheng, X.: Nucleation and growth of needle-like fluorapatite crystals in bioactive glass–ceramics. J. Non Cryst. Solids. 354, 938–944 (2008)

    Article  CAS  Google Scholar 

  30. Taruta, S., Mukoyama, K., Suzuki, S.S., Kitajima, K., Takusagawa, N.: Crystallization process and some properties of calcium mica–apatite glass-ceramics. J. Non Cryst. Solids. 296, 201 (2001)

    Article  CAS  Google Scholar 

  31. Chen, X.F., Hench, L.L., Greenspan, D., Zhong, J.P., Zhang, X.K.: Investigation on phase separation, nucleation and crystallization in bioactive glass-ceramics containing fluorophlogopite and fluorapatite Ceram. Int. 24, 401 (1998)

    CAS  Google Scholar 

  32. Mukherjee, D.P., Molla, A.R., Das, S.K.: The influence of MgF2 content on the characteristic improvement of machinable glass ceramics. J. Non Cryst. Solids. 433, 51–59 (2016)

    Article  CAS  Google Scholar 

  33. Motke, S.G., Yawale, S.P., Yawale, S.S.: Infrared spectra of zinc doped lead borate glasses. Bull Mater Sci. 25, 75–78 (2002)

    Article  CAS  Google Scholar 

  34. Furukawa, T., Brawer, S.A., White, W.B.: Raman and infrared spectroscopic studies of the crystalline phases in the system Pb2SiO4–PbSiO3. J. Am. Ceram. Soc. 62, 351–356 (1979)

    Article  CAS  Google Scholar 

  35. Singh, S.P., Pal, K., Tarafder, A., Dsa, M., Annapurna, K., Karmakar, B.: Effects of SiO2 and TiO2 fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of plasma display panels. Bull Mater Sci. 33, 33–41 (2010)

    Article  CAS  Google Scholar 

  36. Dayanand, C., Bhikshamaiah, G., Jaya Tyagaraju, V., Salagram, M., Murthy, A.S.R.K.: Structural investigations of phosphate glasses: a detailed infrared study of the x(PbO)-(1−x) P2O5 vitreous system. J. Mater. Sci. 31, 1945 (1996)

    Article  CAS  Google Scholar 

  37. Ahsan, M.R., Uddin, M.A., Mortuza, M.G.: Infrared study of the effect of P2O5 in the structure of lead silicate glasses. Indian Journal of Pure & Applied Physics. 43, 89–99 (2005)

    CAS  Google Scholar 

  38. Merzbacker, C.I., White, W.B.: The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non Cryst. Solids. 130, 18 (1991)

    Article  Google Scholar 

  39. ElBatal, F.H., Azooz, M.A., Hamdy, Y.M.: Preparation and crystallization of some multicomponent silicate glasses and their glass ceramic derivatives for dental application. J Ceramics International. 35, 1211–1218 (2009)

    Article  CAS  Google Scholar 

  40. ElBatal, H.A., ElKheshen, A.A., Ghoneim, N.A., Marzouk, M.A., ElBatal, F.H., Fayad, A.M., Abdelghany, A.M., El-Beih, A.A.: In vitro bioactivity behavior of some borophosphate glasses containing dopant of ZnO, CuO or SrO together with their glass-ceramic derivatives and their antimicrobial activity. Silicon. 11, 197–208 (2019)

    Article  CAS  Google Scholar 

  41. Filho, O.P., La Torre, G.P., Hench, L.L.: Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J BiomedMaterRes. 30, 509–514 (1996)

    Google Scholar 

  42. Uno, T., Kasuga, T., Nakayama, S., Ikushima, A.J.: Microstructure of mica-based nanocomposite glass-ceramic. J. Am. Ceram. Soc. 76, 539–541 (1993)

    Article  CAS  Google Scholar 

  43. Fernandes, J.S., Gentile, P., Pires, R.A., Reis, R.L., Hatton, P.V.: Multifunctional bioactive glass and glass-ceramic biomaterials withantibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 59, 2–11 (2017)

    Article  CAS  Google Scholar 

  44. Brauera, D.S., Karpukhina, N., O’Donnelld, M.D., Law, R.V., Hill, R.G.: Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid. Acta Biomater. 6, 3275–3282 (2010)

    Article  CAS  Google Scholar 

  45. Courthéoux, L., Lao, J., Nedelec, J., Jallot, E.: Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. J. Phys. Chem. 112, 13663–13667 (2008)

    Google Scholar 

  46. Al-Rashidy, Z.M., Farag, M.M., Abdel Ghany, N.A., Ibrahim, A.M., Abdel-Fattah, W.I.: Aqueous electrophoretic deposition and corrosion protection of borate glass coatings on 316 L stainless steel for hard tissue fixation. Surfaces and Interfaces. 7, 125–133 (2017)

    Article  CAS  Google Scholar 

  47. Haverty, D., Tofail, S., Stanton, K., McMonagle, J.: Structure and stability of hydroxyapatite: density functional calculation and Rietveld analysis. Phys Rev B. 71(9), 94–103 (2005)

    Article  CAS  Google Scholar 

  48. Abdel-Gawad, S.A., Sadik, M.A., Shoeib, M.A.: Enhancing corrosion resistance of galvanized steel by phosphating and silicate post–sealing. Int J Electrochem Sci. 13, 2688–2270 (2018)

    Article  CAS  Google Scholar 

  49. Balamurugan, A., Balossier, G., Michel, J., Ferreira, J.M.F.: Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy. ElectrochimicaActa. 54, 1192 (2009)

    Article  CAS  Google Scholar 

  50. Yang, C.Y., Wang, B.C., Chang, E., Wu, B.C.: Bond degradation at the plasma-sprayed HA coating/Ti-6AI-4Valloy interface: an in vitro study. J. Mater. Sci. Mater. Med. 6, 258 (1995)

    Article  CAS  Google Scholar 

  51. Boccaccini, A.R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I.: Electrophoretic deposition of biomaterials. J. R. Soc. Interface. 7, S581–S613 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the authorities of the National Research Center (Research grant No. 11090114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fathi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, A.M., Fayad, A.M., El-Beih, A.A. et al. Effect of ZnO addition on structure,bioactivity, and corrosion protection of mica-fluorapatite glass/glass-ceramic. J Aust Ceram Soc 57, 1241–1253 (2021). https://doi.org/10.1007/s41779-021-00618-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00618-w

Keywords

Navigation