Skip to main content

Advertisement

Log in

Preparation of porous MgAl2O4 ceramics by a novel pectin gel-casting process

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this paper, a novel pectin gel-casting method was developed to prepare porous MgAl2O4 ceramics using MgO and Al2O3 powders as raw materials and ficus pumila seeds as the gel source. The effects of pectin content on the properties of MgAl2O4 porous ceramics, such as phase composition, microstructural characteristics, apparent porosity, bulk density, compressive strength, and thermal conductivity, were investigated. The results showed that the linear shrinkage of the samples was about 5%, indicating a near-net shape method. With the increase of pectin content, the porosity of porous MgAl2O4 ceramics increased significantly. The prepared MgAl2O4 porous ceramics with different pectin contents showed high apparent porosity of 58.7–70.1%, low thermal conductivity of 0.328–0.840 W/(mK), and relatively high compressive strength of 0.27–2.45 MPa. The proposed method as a near-net shape forming method provided a novel feasible gel-casting method to fabricate other porous ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hammel, E.C., Ighodaro, L.R., Okoli, O.I.: Processing and properties of advanced porous ceramics: an application based review. Ceram. Int. 40(10), 15351–15370 (2014)

    Article  CAS  Google Scholar 

  2. Jones, J.R., Hench, L.L.: Regeneration of trabecular bone using porous ceramics. Curr. Opinion Solid State Mater. Sci. 7(4-5), 301–307 (2003)

    Article  CAS  Google Scholar 

  3. Basu, S., Chatterjee, S., Saha, M., et al.: Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases. Sensors Actuators B Chem. 79(2-3), 182–186 (2001)

    Article  CAS  Google Scholar 

  4. Hashimoto, S., Honda, S., Hiramatsu, T., et al.: Fabrication of porous spinel (MgAl2O4) from porous alumina using a template method. Ceram. Int. 39(2), 2077–2081 (2013)

    Article  CAS  Google Scholar 

  5. Hallstedt, B.: Thermodynamic assessment of the system MgO-Al2O3. J. Am. Ceram. Soc. 75(6), 1497–1507 (1992)

    Article  CAS  Google Scholar 

  6. Yilmaz, S.: Corrosion of high alumina spinel castables by steel ladle slag. Ironmak. Steelmak. 33(2), 151–156 (2006)

    Article  CAS  Google Scholar 

  7. Kalpaklı, Y.K.: Comparative study for physical properties and corrosion mechanism of synthetic and in situ MgAl2O4 spinel formation zero cement refractory castables. Ironmak. Steelmak. 37(6), 414–424 (2013)

    Article  Google Scholar 

  8. Gehre, P., Aneziris, C.G., Berek, H., et al.: Corrosion of magnesium aluminate spinel-rich refractories by sulphur-containing slag. J. Eur. Ceram. Soc. 35(5), 1613–1620 (2015)

    Article  CAS  Google Scholar 

  9. Das, R.R., Nayak, B.B., Adak, S., et al.: Influence of nanocrystalline MgAl2O4 spinel addition on the properties of MgO-C refractories. Mater. Manuf. Process. 27(3), 242–246 (2012)

    Article  CAS  Google Scholar 

  10. Szenes, G.: Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 336(1), 81–89 (2005)

    Article  CAS  Google Scholar 

  11. Di Cosimo, J.I., Díez, V.K., Xu, M., et al.: Structure and surface and catalytic properties of Mg-Al basic oxides. J. Catal. 178(2), 499–510 (1998)

    Article  Google Scholar 

  12. Kamato, Y., Suzuki, Y.: Reactively sintered porous MgAl2O4 for water-purification filter with controlled particle morphology. Ceram. Int. 43(16), 14090–14095 (2017)

    Article  CAS  Google Scholar 

  13. Ganesh, I.: A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int. Mater. Rev. 58(2), 63–112 (2013)

    Article  CAS  Google Scholar 

  14. Yan, W., Chen, J.F., Li, N., et al.: Preparation and characterization of porous MgO-Al2O3 refractory aggregates using an in-situ decomposition pore-forming technique. Ceram. Int. 41, 515–520 (2015)

    Article  CAS  Google Scholar 

  15. Ganesh, I., Bhattacharjee, S., Saha, B.P., et al.: An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO-C refractories. Ceram. Int. 28(3), 245–253 (2002)

    Article  CAS  Google Scholar 

  16. Litovsky, E., Shapiro, M., Shavit, A.: Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: part 2, refractories and ceramics with porosity exceeding 30%. J. Am. Ceram. Soc. 79(5), 1366–1376 (1996)

    Article  CAS  Google Scholar 

  17. Ghasemi-Kahrizsangi, S., Dehsheikh, H.G., Karamian, E., et al.: Effect of MgAl2O4 nanoparticles addition on the densification and properties of MgO-CaO refractories. Ceram. Int. 43(6), 5014–5019 (2017)

    Article  CAS  Google Scholar 

  18. Bai, J.H., Wei, C., Meng, F., et al.: Fabrication of porous Al2O3–MgAl2O4 ceramics using combustion-synthesized powders containing in situ produced pore-forming agents. Mater. Lett. 65(11), 1559–1561 (2011)

    Article  CAS  Google Scholar 

  19. Deng, X.G., Wang, J.K., Liu, J.H., Zhang, H.J., Han, L., Zhang, S.W.: Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics. Ceram. Int. 42, 18215–18222 (2016)

    Article  CAS  Google Scholar 

  20. Gregorová, E., Pabst, W.: Process control and optimized preparation of porous alumina ceramics by starch consolidation casting. J. Eur. Ceram. Soc. 31(12), 2073–2081 (2011)

    Article  Google Scholar 

  21. Omatete, O.O., Janney, M.A., Nunn, S.D.: Gelcasting: from laboratory development toward industrial production. J. Eur. Ceram. Soc. 17(2), 407–413 (1997)

    Article  Google Scholar 

  22. Wen, Y., Liu, X., Chen, X., et al.: Effect of heat treatment conditions on the growth of MgAl2O4, nanoparticles obtained by sol-gel method. Ceram. Int. 43(17), 15246–15253 (2017)

    Article  CAS  Google Scholar 

  23. Yuan, L., Liu, Z., Liu, Z., et al.: Fabrication and characterization of porous MgAl2O4 ceramics via a novel aqueous gel-casting process. Materials. 10(12), 1376 (2017)

    Article  Google Scholar 

  24. Shahbazi, H., et al.: Optimizing the gel-casting parameters in synthesis of MgAl2O4 spinel. J. Alloys Compd. 712, 732–741 (2017)

    Article  CAS  Google Scholar 

  25. Shahbazi, H., Tataei, M., Enayati, M.H.: A novel technique of gel-casting for producing dense ceramics of spinel (MgAl2O4). Ceram. Int. 45(7), 8727–8733 (2019)

    Article  CAS  Google Scholar 

  26. Szudarska, A., Mizerski, T., Sakka, Y., et al.: Application of new low toxic monomers in gelcasting process of alumina powder. IOP Conf. Ser. Mater. Sci. Eng. 18, 072009 (2011)

    Article  Google Scholar 

  27. Cai, K., Huang, Y., Yang, J.: A synergistic low-toxicity gelcasting system by using HEMA and PVP. J. Am. Ceram. Soc. 88(12), 3332–3337 (2005)

    Article  CAS  Google Scholar 

  28. Ma, J., Xie, Z., Miao, H., et al.: Gelcasting of alumina ceramics in the mixed acrylamide and polyacrylamide systems. J. Eur. Ceram. Soc. 23(13), 2273–2279 (2003)

    Article  CAS  Google Scholar 

  29. Ma, J., Xie, Z., Miao, H., et al.: Elimination of surface spallation of alumina green bodies prepared by acrylamide-based gelcasting via poly(vinylpyrrolidone). J. Am. Ceram. Soc. 86(2), 266–272 (2003)

    Article  CAS  Google Scholar 

  30. Yuan, Z., Zhang, Y., Zhou, Y., et al.: Effect of solid loading on properties of reaction bonded silicon carbide ceramics by gelcasting. RSC Adv. 4(92), 50386–50392 (2014)

    Article  CAS  Google Scholar 

  31. Wu, Z., Sun, L., Wan, P., et al.: Preparation, microstructure and high temperature performances of porous γ-Y2Si2O7 by in situ foam-gelcasting using gelatin. Ceram. Int. 41(10), 14230–14238 (2015)

    Article  CAS  Google Scholar 

  32. Manivannan, R., Kumar, A., Jain, R.K., et al.: Toxic-free aqueous gelcasting of alumina ceramics using alumina sol binder. Int. J. Appl. Ceram. Technol. 12(S3), E1–E6 (2015)

    Article  CAS  Google Scholar 

  33. Liang, R.H., Chen, J., Liu, W., et al.: Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydr. Polym. 87(1), 76–83 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude for the financial support from the National Natural Science Foundation of China (Grant No. 51974074, No. 51874083, No. 51932008, No. 52074070) and the Fundamental Research Funds for the Central Universities (N2025036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, L., Tian, C., Yan, X. et al. Preparation of porous MgAl2O4 ceramics by a novel pectin gel-casting process. J Aust Ceram Soc 57, 1049–1055 (2021). https://doi.org/10.1007/s41779-021-00606-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00606-0

Keywords

Navigation