Skip to main content

Characterization of multilayer Al doping in ZnO

Abstract

ZnO, ZnO/Al, Al/ZnO/Al, and ZnO/Al/ZnO samples were deposited on c-plane sapphire and Si substrates by radio frequency magnetron sputtering (RFMS) using ZnO target. In order to form doped ZnO:Al thin films, these grown samples were annealed at temperatures of 450°C for 1 h to let diffuse Al atoms into the ZnO. After annealing homogeneous Al, diffusion is observed for the sample having Al layer at the top and the bottom of the ZnO from the cross-sectional SEM images. The effects of Al diffusion on structural, optical, electrical, and magnetic properties of ZnO layers were investigated by using x-ray diffraction (XRD), optical transmittance, sheet resistance, and magnetic field dependence of magnetization (M(H)) measurements. After annealing, the optical transmissions of samples were higher than 60% in the visible and near-infrared region for all samples. The sheet resistance measurement results showed that the conductivity of Al/ZnO/Al deposited on sapphire was found to be 2.64 × 101 (Ω)−1 after annealing. The magnetism measurement results in that all samples show a weak ferromagnetic behavior except for the Al/ZnO/Al sample, which is attributed to the interface exchange coupling between the layers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Tüzemen, S., Gür, E., Yıldırım, T., Xiong, G., Williams, R.T.: J. Appl. Phys. 100, 103513 (2006)

    Article  Google Scholar 

  2. Dong, H., Zhou, B., Li, J., Zhan, J., Zhang, L.: J. Mater. 3, 255 (2017)

    Google Scholar 

  3. Demirci, S., Dikici, T., Tünçay, M.M., Kaya, N.: Appl. Surf. Sci. 507, 145083 (2020)

    CAS  Article  Google Scholar 

  4. Fathima, M.I., Wilson, K.S.J.: Vacuum. 165, 58 (2019)

    CAS  Article  Google Scholar 

  5. Yoon, J., Huang, F., Shin, K.H., Sohn, J.I., Hong, W.K.: Materials. 13, 268 (2020)

    CAS  Article  Google Scholar 

  6. Bhat, S.S., Qurashi, A., Khanday, F.A.: Trends Anal. Chem. 86, 1 (2017)

    CAS  Article  Google Scholar 

  7. Chen, X., Wang, X., Liu, F., Song, X., Cui, H.: Vacuum. 178, 109453 (2020)

    CAS  Article  Google Scholar 

  8. Tekmen, S., Gür, E., Asıl, H., Çınar, K., Coşkun, C., Tüzemen, S.: Phys. Stat. Sol. A. 207, 1464 (2010)

    CAS  Google Scholar 

  9. Gür, E., Tabares, G., Arehart, A., Chauveau, J.M., Hierro, A., Ringel, S.A.: J. Appl. Phys. 112, 123709 (2012)

    Article  Google Scholar 

  10. Makino, H., Shimizu, H.: Appl. Surf. Sci. 439, 839 (2018)

    CAS  Article  Google Scholar 

  11. Kek, R., Nee, C.H., Yap, S.L., Tou, T.Y., Arof, A.K.B.H.M., Koh, S.F., Yap, S.S.: Mater. Res. Express. 5, 116201 (2018)

    Article  Google Scholar 

  12. Kraya, R., Baskar, J., Arceo, A., Katz, H.E., Thakor, N.: Thin Solid Films. 664, 41 (2018)

    CAS  Article  Google Scholar 

  13. Yıldız, D.E.: J. Mater. Sci. Mater. 29, 17802 (2018)

    Article  Google Scholar 

  14. Higgins, M., Pintor-Monroy, M.I., Quevedo-Lopez, M.: Cryst. Res. Technol. 53, 1800039 (2018)

    Article  Google Scholar 

  15. Senadim, E., Kavak, H., Esen, R.: J. Physics-Condens Matter. 18, 6391 (2006)

    CAS  Article  Google Scholar 

  16. Bruncko, J., Sutta, P., Netrvalová, M., Michalka, M., Vincze, A.: Vacuum. 159, 134 (2019)

    CAS  Article  Google Scholar 

  17. Selim, M.S., Sekhar, M.C., Raju, A.R.: Appl. Phys. A Mater. Sci. Process. 78, 1215 (2004)

    CAS  Article  Google Scholar 

  18. Kim, J.H., Moon, Y.J., Kim, S.K., Yoo, Y.Z., Seong, T.Y.: Ceram. Int. 41, 14805 (2015)

    Article  Google Scholar 

  19. Rahman, A., Jayaganthan, R., Sharma, J.V.N.: Surf. Eng. 30, 709 (2014)

    CAS  Article  Google Scholar 

  20. Al-Kuhaili, M.F., Al-Maghrabi, M.A., Durrani, S.M.A., Bakhtiari, I.A.: J. Phys. D. Appl. Phys. 41, 215302 (2008)

    Article  Google Scholar 

  21. Rwenyagila, E.R., Tuffour, B.A., Kana, M.G.Z., Ojo, O.A., Soboyejo, W.O.: J. Mater. Res. 29, 24 (2014)

    Article  Google Scholar 

  22. Gadallah, A.S., El-Nahass, M.M.: Adv. Condens. Matter Phys. 2013, 234546 (2013)

    Article  Google Scholar 

  23. Burstein, E.: Phys. Rev.. 93, 632 (1954); Moss, T. S.: Proc. Phys. Soc. London. B76, 775 (1954).

  24. Kumbhar, D., Kumbhar, S., Salunke, G., Nalawade, R., Nalawade, A.: Macromol. Symp. 387, 1800192 (2019)

    CAS  Article  Google Scholar 

  25. Meriche, F., Touam, T., Chelouche, A., Dehimi, M., Solard, J., Fischer, A., Boudrioua, A., Peng, L.H.: Electron. Mater. Lett. 11, 862 (2015)

    CAS  Article  Google Scholar 

  26. Saha, B., Sarkar, K., Bera, A., Deb, K., Thap, R.: Appl. Surf. Sci. 418, 328 (2017)

    CAS  Article  Google Scholar 

  27. Seo, I., Ryu, S.O.: J. Korean Phys. Soc. 66, 790 (2015)

    CAS  Article  Google Scholar 

  28. Vijayaprasath, G., Murugan, R., Mahalingam, T., Hayakawa, Y., Ravi, G.: J.Alloys Compd. 649, 275 (2015)

    CAS  Article  Google Scholar 

  29. Ye, L.H., Freeman, A.J., Delley, B.: Phys. Rev. B. 73, 033203 (2006)

    Article  Google Scholar 

  30. Van, L.H., Ding, J., Hong, M.H., Fan, Z.C.: Surf. Rev. Lett. 15, 81 (2008)

    CAS  Article  Google Scholar 

  31. Mishra, D.K., Kumar, P., Sharma, M.K., Das, J., Singh, S.K., Roul, B.K., Varma, S., Chatterjee, R., Srinivasu, V.V., Kanjilal, D.: Physica B: Cond. Matter. 405, 2659 (2010)

    CAS  Article  Google Scholar 

  32. Ekicibil, A., Bulun, G., Çetin, S., Dikmen, Z.: J. Supercond. Nov. Magn. 25, 435 (2012)

    CAS  Article  Google Scholar 

  33. Cao, X., Meng, J., Mi, F., Zhang, Z., Sun, J.: Solid State Commun. 151, 678 (2011)

    CAS  Article  Google Scholar 

  34. Rubi, D., Fontcuberta, J., Calleja, A., Aragones, L.: Phys. Rev. B. 75, 155322 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted in Ataturk University, Department of Physics, Faculty of Science, Sivas Cumhuriyet University R&D Center (CUTAM) in SEM Lab., Sivas Cumhuriyet University Nanophotonic Application and Research Center in Optic Lab and Cukurova University.

Funding

This research was supported by the Scientific Research Project Fund of Sivas Cumhuriyet University under the project number F-537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Şenadım Tüzemen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tüzemen, E.Ş., Muğlu, G.M., Alaydın, B.Ö. et al. Characterization of multilayer Al doping in ZnO. J Aust Ceram Soc 57, 1039–1047 (2021). https://doi.org/10.1007/s41779-021-00604-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00604-2

Keywords

  • Aluminum diffusion
  • ZnO
  • Al doping in ZnO
  • Magnetron sputtering
  • Ferromagnetism