Skip to main content
Log in

Dielectric characteristics of complex perovskite ceramic at microwave frequencies for application in dielectric resonator antenna temperature sensor network

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The microwave dielectric characteristics of La(Mg0.5-xCaxSn0.5)O3 ceramics are studied for application in the dielectric resonator antenna temperature sensor network. La(Mg0.49Ca0.01Sn0.5)O3 ceramics that were sintered at 1600 °C for 4 h have a bulk density of 6.57 g/cm3, a dielectric constant (εr) of 19.9, a quality factor (Q × f) of 94,300 GHz, and a temperature coefficient at the resonant frequency (TCF) of − 87 ppm/°C. The respective sensitivity of − 88.96, − 93.40, and − 91.02 ppm/°C for sensor 1, sensor 2, and sensor 3 is achieved. The linearity of sensor 1, sensor 2, and sensor 3 is 6.6%, 6.7%, and 6.3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reindl, L.M., Shrena, I.M.: Wireless measurement of temperature using surface acoustic waves sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51, 1457–1463 (2004)

    Article  Google Scholar 

  2. Chen, Y.C., Du, Y.X.: Influence of Co substitution on crystal structures, Raman spectroscopy, and microwave dielectric properties of Mg2SnO4 ceramics. J. Aust. Ceram. Soc. (2020). https://doi.org/10.1007/s41779-020-00494-w

  3. Oliveria, R.G.M., de Morais, J.E.V., Batista, G.S., Silva, M.A.S., Goes, J.C., Sombra, A.S.B.: Dielectric characterization of BiVO4-TiO2 composites and applications in microwave range. J. Alloys Compd. 775, 889–895 (2019)

    Article  Google Scholar 

  4. Martins, V.C., Oliveria, R.G.M., Carmo, F.F.: High thermal stability of Li2TiO3-Al2O3 composite in the microwave C-Band. J. Phys. Chem. Solids. 125, 51–56 (2019)

    Article  CAS  Google Scholar 

  5. Yan, Y., Li, Z., Zhang, M.: Preparation and microwave dielectric properties of Ca0.6La0.8/3(SnxTi1−x)O3 ceramics. Ceram. Int. 43, 8534–8537 (2017)

    Article  CAS  Google Scholar 

  6. Xian, Y., Yuan, S., An, S., Jiang, J., Gan, L., Zhang, T.: Fabrication and microwave dielectric properties of the x(Ca0.8Na0.1Sm0.1)TiO3–(1− x)(Sm0.5Nd0.5)AlO3 ceramic. J. Mater. Sci. Mater. Electron. 29, 18634–18639 (2018)

    Article  Google Scholar 

  7. Xian, Y., Yuan, S., An, S., Jiang, J., Gan, L., Zhang, T.: Microwave dielectric properties of the (1−x)(Mg0.97Zn0.03)(Ti0.97Sn0.03)O3–x(Ca0.8Na0.1Sm0.1)TiO3 ceramic system. J. Mater. Sci. Mater. Electron. 29, 18791–18796 (2018)

    Article  Google Scholar 

  8. Chen, Y.C., Hsu, C.H., Chen, K.C.: Dielectric properties of La(Mg0.5Sn0.5)O3 ceramics doped with V2O5 at microwave frequencies. Ferroelectrics. 393, 54–62 (2009)

    Article  CAS  Google Scholar 

  9. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Found. Crystallogr. A32, 751–767 (1976)

    Article  CAS  Google Scholar 

  10. Tohdo, Y., Kakimoto, K., Ohsato, H., Yamada, H., Okawa, T.: Microwave dielectric Characteristics and crystal structure of homologous compounds ALa4Ti4O15 (A = Ba, Sr and Ca) for base station applications. J. Eur. Ceram. Soc. 26, 2039–2043 (2006)

    Article  CAS  Google Scholar 

  11. Bhuyan, R.K., Kumar, T.S., Pamu, D.: Liquid phase effect of Bi2O3 additive on densification, microstructure and microwave dielectric properties of Mg2TiO4 ceramics. Ferroelectrics. 516, 173–184 (2017)

    Article  CAS  Google Scholar 

  12. Yao, G.G., Hou, C.D., Pei, C.J.: Effects of Mg(OH)2 on phase formation and microwave dielectric properties of Mg6Ti5O16 ceramics. Ferroelectrics. 536, 156–161 (2018)

    Article  CAS  Google Scholar 

  13. Fu, Z., Liu, G.: Synthesis, microstructure and microwave dielectric properties of Li2Mg3SnO6 ceramics with excess lithium. Ferroelectrics. 537, 105–111 (2018)

    Article  CAS  Google Scholar 

  14. Larson A.C., Von Dreele R.B.: General structure analysis system (GSAS), Los. Alamos National Laboratory Report LAUR 86 (2000).

  15. Hakki, B.W., Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  16. Courtney, W.E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave materials. IEEE Trans. Microw. Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  17. Kobayashi, Y., Katoh, M.: Microwave measurement of dielectric properties of low-Loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586–592 (1985)

    Article  Google Scholar 

  18. Chen, Y.C., Weng, M.Z., Du, Y.X., Hsiao, C.L.: Microwave dielectric properties of Nd(Ti0.5−xZrx)W0.5O4 ceramics for application in antenna temperature sensor. J. Mater. Sci. Mater. Electron. 29, 4717–4723 (2018)

    Article  CAS  Google Scholar 

  19. Stutzman, W.L., Thiele, G.A.: Antenna theory and design. Wiley, Hoboken (2012)

    Google Scholar 

  20. Chang, T.H., Jiang, J.H.: Meandered T-shaped monopole antenna. IEEE Trans. Antennas Propagat. 57, 3976–3978 (2009)

    Article  Google Scholar 

  21. Tan, Q., Ren, Z., Cai, T., Li, C., Zheng, T., Li, S., Xiong, J.: Wireless passive temperature sensor realized on multilayer HTCC tapes for harsh environment. J. Sens. 2015, 124058 (2015)

    Article  Google Scholar 

  22. Zhou, H.D., Goodenough, J.B.: Localized or itinerant TiO3 electrons in RTiO3 perovskites. J. Phys. Condens. Matter. 17, 7395–7406 (2005)

    Article  CAS  Google Scholar 

  23. Duyckaerts, M.L., Tarte, P.: Vibrational studies of molybdates, tungstates and related c compounds—III. Ordered cubic perovskites A2BIIBVIO6. Spectrochim. Acta A. 30, 1171–1786 (1974)

    Google Scholar 

  24. Babu, G.S., Subramanian, V., Murthy, V.R.K., Lin, I.N., Chia, C.T., Liu, H.L.: Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5−x)Snx)O3 ceramics. J. Appl. Phys. 102, 064906 (2007)

    Article  Google Scholar 

  25. Zheng, H., Bagshaw, H., Csete de Gyorgyfalva, G.D.C., Reaney, I.M., Ubic, R., Yarwood, J.: Raman spectroscopy and microwave properties of CaTiO3-based ceramics. J. Appl. Phys. 94, 2948–2956 (2003)

    Article  CAS  Google Scholar 

  26. Zheng, H., Reaney, I.M., Csete de Gyorgyfalva, G.D.C., Ubic, R., Yarwood, J., Seabra, M.P., Ferreira, V.M.: Raman spectroscopy of CaTiO3-based perovskite solid solutions. J. Mater. Res. 19, 488–495 (2004)

    Article  CAS  Google Scholar 

  27. Zhao, F., Yue, Z., Gui, Z., Li, L.: Preparation, characterization and microwave dielectric characteristics of A2BWO6 (A=Sr, Ba ; B=Co, Ni, Zn) double perovskite ceramics. Jpn. J. Appl. Phys. 44, 8066–8070 (2005)

    Article  CAS  Google Scholar 

  28. Reaney, I.M., Collea, E.L., Setter, N.: Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)

    Article  CAS  Google Scholar 

  29. Kim, E.S., Yoon, K.H.: Microwave dielectric properties of (1−x)CaTiO3–xLi1/2Sm1/2TiO3 ceramics. J. Eur. Ceram. Soc. 23, 2397–2401 (2003)

    Article  CAS  Google Scholar 

  30. Jo, H.J., Kim, J.S., Kim, E.S.: Microwave dielectric properties of MgTiO3-based ceramics. Ceram. Int. 41, S530–S536 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Science Council in Taiwan, for financially supporting this research under Contract No. 108-2622-8-262 -001 -TE1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yih-Chien Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CH., Chen, YC., You, YC. et al. Dielectric characteristics of complex perovskite ceramic at microwave frequencies for application in dielectric resonator antenna temperature sensor network. J Aust Ceram Soc 57, 983–992 (2021). https://doi.org/10.1007/s41779-021-00598-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00598-x

Keywords

Navigation