Skip to main content

Advertisement

Log in

Bioactive glass-ceramic synthesis using nano and normal silica: a comparative study

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Bioactive glass-ceramics are very promising materials for soft and hard tissue repair due to their high biocompatibility and bioactivity. The bioactive glass-ceramics (NSGC) containing (38-X)normal-SiO2-28CaO-18Al2O3-12CaF2-4P2O5-Xnano-SiO2 (mol%) (where X = 0, 19, and 38) system were synthesized using melt-quench method. The thermal behaviors were assessed by differential thermal analysis (DTA). The glass transition temperature (Tg) was high in the case of a mixture of 19 mol% normal silica and 19 mol% nano-silica. However, it was less with 38 mol%, either normal silica-containing or nano-silica-containing samples. As the quantity of nano-silica increases, the crystallization peak temperature (Tp) was increased. The X-ray diffractometer (XRD) result showed that the fluorapatite (FA) (Ca5(PO4)3F), mullite (M) (3Al2O3.2SiO2), and wollastonite (W) (CaSiO3) had the main crystalline phases for all the three batches. The crystals were needle and irregular shaped in all sintered specimens, as shown in a scanning electron microscope (SEM). They also showed the indications of surface cracks in case of high sintering temperature. Energy-dispersive X-ray spectroscopy (EDX) analysis showed the specimen’s elemental composition before and after the immersion in synthetic body fluid (SBF) solution. Fourier transform infrared (FTIR) spectra showed the characteristic peaks for Si–O–Si, Si–O–Ca, C–O stretching, O–H bending vibration, carbonate, and phosphate groups. The transmission electron microscope (TEM) images confirmed that the nanoparticles (2.58–8.15 nm) were present in the prepared glass-ceramics. The hydroxycarbonate apatite (HCA) layer was developed after 28 days of immersing in the modified SBF. The addition of nano-SiO2 in the specimens showed an increase in Vickers hardness, density, and acid-base resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B :

full width at half maximum (FWHM)

d :

mean crystallite size

E a :

activation energy

Hv:

Vickers hardness number (VHN) in kg/mm2

K :

0.94 (Scherrer constant)

k :

reaction rate constant related

l d :

mean diagonal length in mm

m :

machinability parameter

n :

Avrami exponent

P :

load in kg

R :

gas constant

T :

temperature

T g :

glass transition temperature

T p :

crystallization peak temperature

TS :

thermal stability

t :

time

W 0 :

weight of samples before immersion

W L :

relative weight loss percentage

W t :

weight of samples after immersion

x :

volume fraction of crystallized phase

β :

heating rate of DTA

λ :

wavelength of the X-ray radiation

θ :

Bragg angle of the XRD peak

μ 1 :

cutting energy

ν :

the pre-exponential factor

References

  1. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117 (1971)

    Article  Google Scholar 

  2. Dimitriadis, K., Moschovas, D., Tulyaganov, D.U., Agathopoulos, S.: Development of novel bioactive glass-ceramics in the Na2O/K2O-CaO-MgO-SiO2-P2O5-CaF2 system. J. Non-Cryst. Solids. 533, 119936 (2020)

    Article  CAS  Google Scholar 

  3. Anderson, O.H., Liu, G., Karlsson, K.H., Niemi, L., Miettinen, J., Juhanoja, J.: In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. J. Mater. Sci. Mater. Med. 1, 219 (1990)

    Article  Google Scholar 

  4. Bellucci, D., Sola, A., Gazzarri, M., Chiellini, F., Cannillo, V.: A new hydroxyapatite-based biocomposite for bone replacement. Mater. Sci. Eng. C. 33, 1091 (2013)

    Article  CAS  Google Scholar 

  5. Yousefi, A.-M., Oudadesse, H., Akbarzadeh, R., Wers, E., Lucas-Girot, A.: Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nano. Technol. Rev. 3, 527 (2014)

    CAS  Google Scholar 

  6. Peitl, O., Dutra, E.Z., Hench, L.L.: Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. J. Non-Cryst. Solids. 292, 115 (2001)

    Article  CAS  Google Scholar 

  7. Kokubo, T., Shigematsu, M., Nagashima, Y., Tashiro, M., Nakamura, T., Yamamuro, T., Higashi, S.: Apatite and wollastonite containing glass-ceramics for prosthetic application. Bull. Inst.Chem. Res. Kyoto Univ. 60, 260 (1982)

    CAS  Google Scholar 

  8. Bogdanov, B.I., Pashev, P.S., Hristov, J.H., Markovska, I.G.: Bioactive fluorapatite-containing glass ceramics. Ceram. Int. 35, 1651 (2009)

    Article  CAS  Google Scholar 

  9. Pashev, P., Bogdanov, B., Hristov, Y.: Crystallisation kinetics and phase transformation of SiO2-Al2O3-P2O5-CaO-CaF2 glass. J. Univ. Chem. Tech. Met. 47(4), 398 (2012)

    CAS  Google Scholar 

  10. Hoeland, W., Vogel, W., Waumann, K., Gummel, J.: Interface reactions between machinable bioactive glass-ceramics and bone. J. Biomed. Mater. Res. 19(3), 303 (1985)

    Article  CAS  Google Scholar 

  11. Liu, X., Ding, C., Chu, P.K.: Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomat. 25, 1755 (2004)

    Article  CAS  Google Scholar 

  12. De Aza, P.N., Luklinska, Z., Anseau, M.R., Guitian, F., De Aza, S.: Reactivity of wollastonite-tricalcium phosphate Bioeutectic ceramic in human parotid saliva. Biomat. 21, 1735 (2000)

    Article  Google Scholar 

  13. Mukherjee, D.P., Das, S.K.: Effects of nano silica on synthesis and properties of glass ceramics in SiO2-Al2O3-CaO-CaF2 glass system: a comparison. J. Non-Cryst. Solids. 368, 98 (2013)

    Article  CAS  Google Scholar 

  14. Zhao, D., Moritz, N., Vedel, E., Hupa, L., Aro, H.T.: Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants. Acta Biomater. 4, 1118 (2008)

    Article  CAS  Google Scholar 

  15. Nozawa, K., Gailhanou, H., Raison, L., Panizza, P., Ushiki, H., Sellier, E., Delville, J.P., Delville, M.H.: Smart control of monodisperseStober silica particles: effect of reactant addition rate on growth process. Langmuir. 21, 1513 (2005)

    Article  Google Scholar 

  16. Ji, T.: Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cem. Concr. Res. 35, 1943 (2005)

    Article  CAS  Google Scholar 

  17. Nazari, A., Riahi, S.: The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Comp. Part B: Engg. 42(3), 570 (2011)

    Article  Google Scholar 

  18. Givi, A., Rashid, S., Aziz, F., Amran, M., Salleh, M.: Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Comp. Part B: Engg. 41, 673 (2011)

    Article  Google Scholar 

  19. Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Abadir, E.F., Hussain, A.I.: Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar. Mater. Des. 33, 127 (2012)

    Article  CAS  Google Scholar 

  20. Hench, L.L., et al.: J. Amer. Ceram.Soc. 81(7), 1705 (1998)

    Article  CAS  Google Scholar 

  21. Lin, D., Lin, K., Chang, W., Luo, H., Cai, M.: Improvements of nano-SiO2 on sludge/fly ash mortar. Waste Manag. (Oxf.). 28(1081), (2008)

  22. El-Didamony, H., El-Fadaly, E., Amer, A.A., Abazeed, I.H.: Synthesis and characterization of low cost nanosilica from sodium silicate solution and their applications in ceramic engobes. Bol. Soc. Esp. Cerám. Vidir. 59(1), 31 (2019). Available from : https://doi.org/10.1016/j.bsecv.2019.06.004

  23. Ghosh, T.K., Mukherjee, D.P., Ghorai, U.K., Das, S.K.: Synthesis and crystallisation kinetics study of nano-Al2O3 containing bio-active glass-ceramics. Materialstoday: proceed. 11(2), 794 (2019)

    CAS  Google Scholar 

  24. Ozawa, T.: Kinetic analysis of derivative curves in thermal analysis. J. Therm. Anal. 2, 301 (1970)

    Article  CAS  Google Scholar 

  25. Fraczyk, A.: The activation energy of primary crystallisation of Fe95Si5 metallic glass. Tech. Sci. 14(1), 93 (2011)

    Google Scholar 

  26. Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)

    Article  CAS  Google Scholar 

  27. Baik, D.S., No, K.S., Chun, J.S., Yoon, Y.J., Cho, H.Y.: A comparative evaluation method of machinability for mica-based glass-ceramics. J. Mater. Sci. 30, 1801 (1995)

    Article  CAS  Google Scholar 

  28. Baik, D.S., No, K.S., Chun, J.S., Cho, H.Y.: Effect of aspect ratio of mica crystals and crystallinity on the microhardness and machinability of mica glass ceramics. J. Mater. Process. Technol. 67, 50 (1997)

    Article  Google Scholar 

  29. Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37 degrees C in synthetic body fluids. Biomat. 21(14), 1429 (2000)

    Article  CAS  Google Scholar 

  30. Blaine, R.L., Kissinger, H.E.: Homer Kissinger and the Kissinger equation. Thermo. Chimica. Acta. 540, 1 (2012)

    Article  CAS  Google Scholar 

  31. Taygun, M.E., Hocaoglu, V.: Crystallization behaviour of 45S5 bioactive glass modified by therapeutic ions. Int. J. Appl. Glas. Sci. 9, 62 (2018)

    Article  Google Scholar 

  32. Avrami, M.: Kinetics of phase change I. General theory. J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  33. Johnson, W.A., Mehl, R.F.: Reaction kinetics in processes of nucleation and growth. Trans. Amer. Inst. Mining and Metal Eng. 135, 416 (1939)

    Google Scholar 

  34. Kissinger, H.E.: Variation of peak temperature with heating rates in differential thermal analysis. J. Res. National Inst. Stand and Tech. 57, 217 (1956)

    Article  CAS  Google Scholar 

  35. Cheng, K.: Evaluation of crystallization kinetics of glasses by non-isothermal analysis. J. Mater. Sci. 36, 1043 (2001)

    Article  CAS  Google Scholar 

  36. Park, Y.J., Heo, J.: Nucleation and crystallization kinetics of glass derived from incinerator fly ash waste. Ceram. Int. 8(6), 669 (2002)

    Article  Google Scholar 

  37. Perez-Maqueda, L.A., Criado, J.M., Malek, J.: Combined kinetic analysis for crystallization kinetics of non-crystalline solids. J. Non-Crystal. Solids. 320(1), 84 (2003)

    Article  CAS  Google Scholar 

  38. Baesso, M.L., Bento, A.C., Duarte, A.R., Neto, A.M., Miranda, L.C.M., Sampaio, J.A., Catunda, T., Gama, S., Gandra, F.C.G.: Nd2O3 doped low silica calcium alumina silicate glasses: thermo mechanical properties. J. Appl. Physiol. 85(12), 8112 (1999)

    Article  CAS  Google Scholar 

  39. Farooq, I., Imran, Z., Farooq, U., Leghari, A., Ali, H.: Bioactive glass: a material for the future. World J. Dent. 3(2), 199 (2012)

    Article  Google Scholar 

  40. Li, P., Kangasniemi, I., de Groot, K., Kokubo, T.: Bone-like hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc. 77, 1307 (1994)

    Article  CAS  Google Scholar 

  41. Li, P., Kangasniemi, I., de Groot, K., Kokubo, T., Yli-Urpo, A.U.: Apatite crystallization from metastable calcium phosphate solution on sol gel prepared silica. J. Non-Crystal. Solids. 168, 281 (1994)

    Article  CAS  Google Scholar 

  42. Cho, S.O., Nakanishi, K., Kokubo, T., Soga, N., Ohtsuki, C., Nakamura, T., Kitsugi, T., Yamamuro, T.: Dependence of apatite formation on silica gel on its structure: effect of heat treatment. J. Am. Ceram. Soc. 78, 1769 (1995)

    Article  CAS  Google Scholar 

  43. Kokubo, T., Miyaji, F., Kim, H.M., Nakamura, T.: Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. J. Am. Ceram. Soc. 79, 1127 (1996)

    Article  CAS  Google Scholar 

  44. Himanshu, T., Singh, S.P., Sampath, K.A., Prerna, M., Ashish, J.: Studies on preparation and characterization of 45S5 bioactive glass doped with (TiO + ZrO2) as bioactive ceramic material. Bioceram. Dev. Appl. 6(1), 90 (2016)

    Google Scholar 

  45. Stoch, A., Jastrzebski, W., Brozek, A., Trybalska, B., Cichocinska, M., Szarawara, E.: FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J. Mol. Struct. 511-512, 287 (1999)

    Article  CAS  Google Scholar 

  46. Kansal, I., Goel, A., Tulyaganov, D.U., Pascual, M.J., Lee, H.Y., Kim, H.W., Ferreira, J.M.F.: Diopside (CaO.MgO.2SiO2)-fluoratite (9CaO.3P2O5.CaF2) glass-ceramics: potential materials for bone tissue engineering. J. Mater. Chem. 21, 16247 (2011)

    Article  CAS  Google Scholar 

  47. Tulyaganov, D., Agathopoulos, S., Valerio, P., Balamurugan, A., Saranti, A., Karakassides, M., Ferreira, J.: Synthesis, bioactivity and preliminary biocompatibility studies of glasses in the system CaO-MgO-SiO2-Na2O-P2O5-CaF2. J. Mater. Sci. Mater. Med. 22, 217 (2011)

    Article  CAS  Google Scholar 

  48. Jokanovic, V., Jokanovic, B., Markovicl, D.: Kinetics and sintering mechanism of hydro-thermally obtained hydroxyapatite. Mater. Chem. Phys. 111, 180 (2008)

    Article  CAS  Google Scholar 

  49. Hench, L.L.: Bioceramics; from concept to clinic. J. Am. Ceram. Soc. 74, 1487 (1991)

    Article  CAS  Google Scholar 

Download references

Funding

The authors are gratefully recognizing the UGC UPE-II project (Sanction No.: UGC/166/UPE-II dated: 03/04/2014) for providing the research fund and fellowship of T. K. Ghosh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, T.K., Das, S.K. Bioactive glass-ceramic synthesis using nano and normal silica: a comparative study. J Aust Ceram Soc 57, 933–946 (2021). https://doi.org/10.1007/s41779-021-00596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00596-z

Keywords

Navigation