Skip to main content

Advertisement

Log in

Influence of the particle size distribution of coarse-grained refractories on the thermal shock performance

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

This study investigated the influences of the particle size distribution (characterized by the amounts of fines and coarses and by the maximum particle size (1|3 mm)) and the compaction pressure (50|100 MPa) of die-pressed bars on the behavior of the bulk density, cold modulus of rupture (CMOR) and Young’s modulus E during five thermal shocks (TS). Highest densities were obtained for wide particle size distributions with densest packed coarse aggregates, a slight excess of lubricating fines and a high compaction pressure. Highest CMOR and E were obtained for the same parameters with the exception of a maximum particle size of 1 mm inducing lower flaw sizes. Independent on the compaction pressure, lowest CMOR losses during TS were obtained for a wide particle size distribution with a high number of aggregates constituted of medium-sized grains and densest packed coarses. Supposedly, crack deflection and contact shielding toughening occurred. During TS, E behaved differently. Probably, E was low when there were many flaws. During TS, these led to a large process zone and high decrease of E whereas for batches with higher initial E a crack could propagate with less microstructural interactions giving supposedly a smaller process zone and a reduced decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data was included in the Online Resource by means and standard deviations.

References

  1. Ratle, A., Pandolfelli, V.C., Allaire, C., Rigaud, M.: Correlation between thermal shock and mechanical impact resistance of refractories. Br. Ceram. Trans. 96(6), 225–230 (1997)

    CAS  Google Scholar 

  2. Hasselman, D.P.H.: Elastic energy at fracture and surface energy as design criteria for thermal shock. J. Am. Cer. Soc. 46(11), 535–540 (1963)

    Article  CAS  Google Scholar 

  3. Hasselman, D.P.H.: Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Cer. Soc. 52(11), 600–604 (1969)

    Article  CAS  Google Scholar 

  4. Larson, D.R., Coppola, J.A., Hasselman, D.P.H.: Fracture toughness and spalling behavior of high-Al2O3 refractories. J. Am. Cer. Soc. 57(10), 417–421 (1974)

    Article  CAS  Google Scholar 

  5. Kingery, W.D.: Factors affecting thermal stress resistance of ceramic materials. J. Am. Cer. Soc. 38(1), 3–15 (1955)

    Article  Google Scholar 

  6. Ko, Y.-C.: Influence of the total ffine content on the thermal shock damage resistance of Al2O3-spinel castables. Ceram. Int. 27, 501–507 (2001)

    Article  CAS  Google Scholar 

  7. Schulle, W.: Refractory materials (in German). Dt. Verlag für Grundstoffind. Leipzig, Erste edition (1990)

  8. Luo, Y., Gu, H., Zhang, M., Huang, A., Li, H., Yu, C., Li, T., Yan, P.: Research on thermal shock resistance of porous refractory material by strain-life fatigure approach. Ceram Int. 46, 14884–93 (2020)

    Article  CAS  Google Scholar 

  9. Ulbricht, J., Dudczig, S., Tomsu, F., Palco, S.: Technological measures to improve the thermal shock resistance of refractory materials. Interceram 2, 103–106 (2012)

    Google Scholar 

  10. Fu, L., Gu, H., Huang, A., Zhang, M., Hong, X., Jin, L.: Possible improvements of alumina-magnesia castable by lightweight microporous aggregates. Ceram Int. 41, 1263–70 (2015)

    Article  CAS  Google Scholar 

  11. Fruhstorfer, J., Möhmel, S., Thalheim, M., Schmidt, G., Aneziris, C.G.: Microstructure and strength of fused high alumina materials with 2.5,wt% zirconia and 2.5,wt% titania additions for refractory applications. Ceram. Int. 41, 10644–10653 (2015)

    Article  CAS  Google Scholar 

  12. Lee, W.E., Zhang, S., Karakus, M.: Refractories: Controlled microstructure composites for extreme environments. J. Mat. Sci. 39, 6675–6685 (2004)

    Article  CAS  Google Scholar 

  13. Luchini, B., Sciti, V.F., Angelico, R.A., Canto, R.B., Pandolfelli, V.C.: Thermal expansion mismatch inter-inclsion cracrack in ceramic systems. Ceram. Int. 42, 12512–15 (2016)

    Article  CAS  Google Scholar 

  14. Fruhstorfer, J., Demuth, C., Goetze, P., Aneziris, C.G., Ray, S., Gross, U., Trimis, D.: How the coarse fraction influences the microstructure and the effective thermal conductivity of alumina castables—an experimental and numerical study. J. Eur. Ceram. Soc. 38, 303–12 (2018)

    Article  Google Scholar 

  15. Ulbricht, J., Burkhardt, K.: Über den Körnungsaufbau grobkeramischer feuerfester Werkstoffe (On the grading of coarse ceramic refractory materials). Ceramic Forum International 76(4), D9–12 (1999)

    CAS  Google Scholar 

  16. Fruhstorfer, J., Aneziris, C.G.: The influence of the coarse fraction on the porosity of refractory castables. J. Ceram. Sci. Tech. 5(2), 155–166 (2014)

    Google Scholar 

  17. Fruhstorfer, J.: Continuous gap-graded particle packing designs. Mater. Today Commun., 20(100550) (2019)

  18. Fruhstorfer, J., Hubálková, J., Aneziris, C.G.: Particle packings minimizing density gradients of coarse-grained compacts. J. Eur. Ceram. Soc. 39(10), 3264 – 3276 (2019)

    Article  CAS  Google Scholar 

  19. Li, Y., Li, X., Zhu, B., Chen, P.: The relationship between the pore size distribution and the thermo-mechanical properties of high alumina refractory castables. Int. J. Mater. Res. 107(3), 263–8 (2016)

    Article  CAS  Google Scholar 

  20. Schafföner, S., Fruhstorfer, J., Faßauer, C., Freitag, L., Jahn, C., Aneziris, C.G.: Influence of in situ phase formation on properties of calcium zirconate refractories. J. Eur. Ceram. Soc. 37, 305–13 (2017)

    Article  Google Scholar 

  21. Schafföner, S., Bach, M., Jahn, C., Freitag, L., Aneziris, C.G.: Advanced refractories for titanium metallurgy based on calcium zirconate with improved thermomechanical properties. J. Eur. Ceram Soc. 39, 4394–403 (2019)

    Article  Google Scholar 

  22. Saharan, V.A., Kukkar, V., Kataria, M., Kharb, V., Choudhury, P.K.: Ordered mixing: mechanism, process and applications in pharmaceutical formulations. Asian J. Pharm. Sci. 3(6), 240–259 (2008)

    Google Scholar 

  23. Schulle, W., Burkhardt, K., Tomsu, F.: Evaluation of the modulus of elasticity of refractories. In: UNITECR’99. Proc. Unified Int. Tech. Conf. on Refractories, pp. 410–412 (1999)

  24. Coble, R.L., Kingery, W.D.: Effect of porosity on physical properties of sintered alumina. J. Am. Cer Soc. 39(11), 377–385 (1956)

    Article  Google Scholar 

  25. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, Hoboken (2001)

    Google Scholar 

  26. Benesty, J., Chen, J., Huang, Y., Cohen, I.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp 1–4. Springer (2009)

  27. Development Core Team, R: R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2010)

  28. Krause, E., Berger, I., Kröckel, O., Maier, P.: Thermische Prozesse (Thermal Processes), volume 3 of Technologie der Keramik (Ceramic Technology). VEB Verlag für Bauwesen, Berlin (1985)

    Google Scholar 

  29. Fruhstorfer, J., Schafföner, S., Werner, J., Wetzig, T., Schöttler, L., Aneziris, C.G.: Thermal shock performance of refractories for application in steel ingot casting. J. Ceram. Sci Tech. 7(2), 173–181 (2016)

    Google Scholar 

  30. German, R.M.: Sintering Theory and Practice, 1st edn. Wiley, Hoboken (1996)

    Google Scholar 

  31. Bradt, R.C.: Elastic moduli, strength and fracture characteristics of refractories. Key Eng. Mater. 88, 165–92 (1993)

    Article  CAS  Google Scholar 

  32. Evans, A.G., Faber, K.T.: Crack-growth resistance of microcracking brittle materials. J. Am. Ceram Soc. 67(4), 255–60 (1984)

    Article  Google Scholar 

  33. Schafföner, S., Fruhstorfer, J., Ludwig, S., Aneziris, C.G.: Cyclic cold isostatic pressing and improved particle packing of coarse grained oxide ceramics for refractory applications. Ceram. Int. 44(8), 9027–36 (2018)

    Article  Google Scholar 

  34. Schafföner, S., Dietze, C., Möhmel, S., Fruhstorfer, J., Aneziris, C.G.: Refractories containing fused and sintered alumina aggregates: Investigations on processing, particle size distribution and particle morphology. Ceram. Int. 43(5), 4252–62 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The experiments, analyses and the writing of the article were conducted by the sole author.

Corresponding author

Correspondence to Jens Fruhstorfer.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The experiments were conducted within the author’s PhD thesis at the Professorship of Ceramics, TU Bergakademie Freiberg, Germany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 80.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fruhstorfer, J. Influence of the particle size distribution of coarse-grained refractories on the thermal shock performance. J Aust Ceram Soc 57, 899–909 (2021). https://doi.org/10.1007/s41779-021-00593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00593-2

Keywords

Navigation