Skip to main content
Log in

Tailoring pore structures and morphologies of highly ordered cubic mesoporous silica prepared in mild conditions: the effects of reaction parameters

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript


In this study, we report on a novel and reactive synthesis of highly ordered cubic mesoporous silica that is able to tailor different symmetries of pores and morphologies through a two-step procedure carried out in relatively low temperatures (20–60 °C) using a single type of surfactant. We systematically examined the effects of reaction parameters such as pH, times of hydrolysis and condensation, concentration of Pluronic F-127 surfactant, and aging temperature, by using characterization techniques such as small-angle X-ray scattering (SAXS), analysis of surface area and porosity by adsorption of N2 (BET isotherms), and scanning and transmission electron microscopy (SEM and TEM). Our investigations found that, at 20 °C, the shape of particles is sensitive to changes in surfactant concentration which means that it is possible to tune spherical to polyhedral particles by simply increasing the amount of surfactant. In addition, at low concentrations of F-127, the size of the particles is temperature-dependent, with an inversely proportional pattern of behavior. The protocol also enables the production of well-ordered pores, particularly with 3D-cubic symmetries Fm3̅m and Im3̅m, and some hexagonal, as well as to control the sizes of the pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others


  1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  2. Almeida, T.S.D., Guima, K.E., Silveira, R.M., Silva, G.C., Martines, M.A.U., Martins, C.A.: A Pd nanocatalyst supported on multifaceted mesoporous silica with enhanced activity and stability for glycerol electrooxidation. RSC Adv. 7, 12006–12016 (2017).

    Article  CAS  Google Scholar 

  3. Brown, J., Richer, R., Mercier, L.: One-step synthesis of high capacity mesoporous Hg2+ adsorbents by non-ionic surfactant assembly. Microporous Mesoporous Mater. 37, 41–48 (2000)

    Article  CAS  Google Scholar 

  4. Jorgetto, A.O., Pereira, S.P., Silva, R.I.V., Saeki, M.J., Martines, M.A.U., Pedrosa, V.A., Castro, G.R.: Application of mesoporous SBA-15 silica functionalized with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) from water. Acta Chim. Slov. 62, 111–121 (2015).

    Article  CAS  Google Scholar 

  5. Ho, K.Y., McKay, G., Yeung, K.L.: Selective adsorbents from ordered mesoporous silica. Langmuir. 19, 3019–3024 (2003).

    Article  CAS  Google Scholar 

  6. Queiroz, D.F., Dadamos, T.R.L., Machado, S.A.S., Martines, M.A.U.: Electrochemical determination of norepinephrine by means of modified glassy carbon electrodes with carbon nanotubes and magnetic nanoparticles of cobalt ferrite. Sensors. 18, 1223–1234 (2018).

    Article  CAS  Google Scholar 

  7. Lai, C.Y., Trewyn, B.G., Jeftinija, D.M., Jeftinija, K., Xu, S., Jeftinija, S., Lin, V.S.Y.: A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–4459 (2003).

    Article  CAS  Google Scholar 

  8. Mendes, L.S., Saska, S., Martines, M.A.U., Marchetto, R.: Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mater. Sci. Eng. C. 33, 4427–4434 (2013).

    Article  CAS  Google Scholar 

  9. Lechevallier, S., Jorge, J., Silveira, R.M., Ratel-Ramond, N., Neumeyer, D., Menu, M.J., Gressier, M., Marçal, A.L., Rocha, L.A., Martines, M.A.U., Magdeleine, E., Dexpert-Ghys, J., Verelst, M.: Luminescence properties of mesoporous silica nanoparticles encapsulating different europium complexes: application for biolabelling. J. Nanomater.. Article ID 918369, 11 pages. (2013).

  10. Rebbin, V., Jakubowski, M., Pötz, S., Froba, M.: Synthesis and characterisation of spherical periodic mesoporous organosilicas (sph-PMOs) with variable pore diameters. Microporous Mesoporous Mater. 72, 99–104 (2004).

    Article  CAS  Google Scholar 

  11. Martines, M.A.U., Yeong, E., Persin, M., Larbot, A., Voorhout, W.F., Kübel, C.K.U., Kooyman, P., Prouzet, E.: Hexagonal mesoporous silica nanoparticles with large pores and a hierarchical porosity tested for HPLC. C. R. Chimie. 8, 627–634 (2005).

    Article  CAS  Google Scholar 

  12. Li, Y., Cheng, S., Dai, P., Liang, X., Ke, Y.: Large-pore monodispersed mesoporous silica spheres: synthesis and application in HPLC. Chem. Commun. 9, 1085–1087 (2009).

    Article  Google Scholar 

  13. Fan, J., Lei, J., Wang, L.M., Yu, C.Z., Tu, B., Zhao, D.Y.: Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Chem. Commun. 17, 2140–2141 (2003a).

    Article  CAS  Google Scholar 

  14. Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998a)

    Article  CAS  Google Scholar 

  15. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998b)

    Article  CAS  Google Scholar 

  16. Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Tu, B., Zhou, W., Zhao, D.: Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem. Int. Ed. 42, 3146–3150 (2003b).

    Article  CAS  Google Scholar 

  17. Mesa, M., Sierra, L., Patarin, J., Guth, J.L.: Morphology and porosity characteristics control of SBA-16 mesoporous silica. Effect of the triblock surfactant Pluronic F127 degradation during the synthesis. Solid State Sci. 7, 990–997 (2005).

    Article  CAS  Google Scholar 

  18. Boissière, C., Larbot, A., van der Lee, A., Kooyman, P.J., Prouzet, E.: A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chem. Mater. 12, 2902–2913 (2000).

    Article  CAS  Google Scholar 

  19. Boissière, C., Martines, M.A.U., Tokumoto, M., Larbot, A., Prouzet, E.: Mechanisms of pore size control in MSU-X mesoporous silica. Chem. Mater. 15, 509–515 (2003).

    Article  CAS  Google Scholar 

  20. Ballem, M.A., Córdoba, J.M., Odén, M.: Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous Mesoporous Mater. 129, 106–111 (2010).

    Article  CAS  Google Scholar 

  21. Souza, E.J., Cristante, V.M., Padilha, P.M., Jorge, S.M.A., Martines, M.A.U., Silva, R.I.V., Carmo, D.R., Castro, G.R.: Attachment of 2,2-bipyridine onto a silica gel for application as a sequestering agent for copper, cadmium and lead ions from an aqueous medium. Pol. J. Chem. Technol. 13, 28–33 (2011).

    Article  Google Scholar 

  22. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  23. Chen, D., Li, Z., Wan, Y., Tu, X., Shi, Y., Chen, Z., Shen, W., Yu, C., Tu, B., Zhao, D.: Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures. J. Mater. Chem. 16, 1511–1519 (2006).

    Article  CAS  Google Scholar 

  24. Yu, T., Zhang, H., Yan, X., Chen, Z., Zou, X., Oleynikov, P., Zhao, D.: Pore structures of ordered large cage-type mesoporous silica FDU-12s. J. Phys. Chem. B. 110, 21467–21472 (2006).

    Article  CAS  Google Scholar 

  25. Ravikovitch, P.I., Neimarkm, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous Silicas with cubic and three-dimensional hexagonal structures. Langmuir. 18, 1550–1560 (2002).

    Article  CAS  Google Scholar 

  26. Wight, A.P., Davis, M.E.: Design and preparation of organic−inorganic hybrid catalysts. Chem. Rev. 102, 3589–3614 (2002).

    Article  CAS  Google Scholar 

Download references


The authors would like to thank the Universidade Federal de Mato Grosso do Sul. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and CAPES-PrInt, Finance Code 88881.311799/2018-01. The authors are also grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq)—Finance Code 420852/2018-2 and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul—Brasil (FUNDECT-MS)—grants 036/2017 PPSUS-MS (59/300.074/2017) for providing financial support for undertaking this project. Finally, we are grateful to the Brazilian Nanotechnology National Laboratory for conducting the electron microscopy analyses.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marco Antonio Utrera Martines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary data related to this manuscript can be found in the attached file.


(DOCX 3314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira, R.M., de Almeida, E.R., Ospina, C.A. et al. Tailoring pore structures and morphologies of highly ordered cubic mesoporous silica prepared in mild conditions: the effects of reaction parameters. J Aust Ceram Soc 57, 663–672 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: