Skip to main content

Advertisement

Log in

Zirconium oxide and the crystallinity hallows

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Zirconium oxide is one of the most promising ceramic materials as it finds applications in several high-level technological fields, ranging from biomedicine to sensing. Zirconium oxide is characterized by showing very uncommon properties for being a ceramic substrate, such as a certain plastic behavior once subjected to mechanical stress, a naturally occurring phase transformation toughening, as well as a dramatic sensibility toward water-induced aging (if hydrothermally treated). In general, all these properties are strictly correlated with the tetragonal-to-monoclinic interphase transformation and, consequently, driven by the stabilization of the tetragonal phase. Hence, in this study, a summary of the main relevant principles guiding zirconium oxide interphase transformations is proposed, highlighting the important role of stabilizers and the correlation between microstructure and doping. A particular emphasis has been dedicated to the thermodynamics behind these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable—no new data generated.

References

  1. Iranmanesh, M., Hulliger, J.: Ceramic combinatorial syntheses exploring the chemical diversity of metal oxides. Prog. Solid State Chem. 44, 123–130 (2016). https://doi.org/10.1016/j.progsolidstchem.2016.11.003

    Article  CAS  Google Scholar 

  2. Chevalier, J., Gremillard, L.: 1.106 – Zirconia as a biomaterial. In: Ducheyne, P. (ed.) Comprehensive biomaterials, pp. 95–108. Elsevier, Oxford (2011). https://doi.org/10.1016/B978-0-08-055294-1.00017-9

    Chapter  Google Scholar 

  3. Wang, G., Yang, Y., Han, D., Li, Y.: Oxygen defective metal oxides for energy conversion and storage. NanoToday. 13, 23–39 (2017). https://doi.org/10.1016/j.nantod.2017.02.009

    Article  CAS  Google Scholar 

  4. Sk, M.M., Yue, C.Y., Ghosh, K., Jena, R.K.: Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources. 308, 121–140 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.056

    Article  CAS  Google Scholar 

  5. Nisticò, R.: Magnetic materials and water treatments for a sustainable future. Res. Chem. Intermed. 43, 6911–6949 (2017). https://doi.org/10.1007/s11164-017-3029-x

    Article  CAS  Google Scholar 

  6. Palma, D., Bianco Prevot, A., Brigante, M., Fabbri, D., Magnacca, G., Richard, C., Mailhot, G., Nisticò, R.: New insights on the photodegradation of caffeine in the presence of bio-based substances-magnetic iron oxide hybrid nanomaterials. Materials. 11, 1084 (2018). https://doi.org/10.3390/ma11071084

    Article  CAS  Google Scholar 

  7. Dey, A.: Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  8. Nisticò, R., Scalarone, D., Magnacca, G.: Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings. Microporous Mesoporous Mater. 248, 18–29 (2017). https://doi.org/10.1016/j.micromeso.2017.04.017

    Article  CAS  Google Scholar 

  9. Ishak, N.F., Hashim, N.A., Othman, M.H.D., Monash, P., Zuki, F.M.: Recent progress in the hydrophilic modification of alumina membranes for protein separation and purification. Ceram. Int. 43, 915–925 (2017). https://doi.org/10.1016/j.ceramint.2016.10.044

    Article  CAS  Google Scholar 

  10. Castano, C.E., O’Keefe, M.J., Fahrenholtz, W.G.: Cerium-based oxide coatings. Curr. Opin. Solid State Mater. Sci. 19, 69–76 (2015). https://doi.org/10.1016/j.cossms.2014.11.005

    Article  CAS  Google Scholar 

  11. Piconi, C., Porporati, A.A.: Bioinert ceramics: zirconia and alumina. In: Antoniac, I. (ed.) Handbook of Bioceramics and Biocomposites, pp. 59–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-12460-5_4

    Chapter  Google Scholar 

  12. Fletcher, L.: The occurrence of native zirconia (baddeleyite). Nature. 47, 283–284 (1893). https://doi.org/10.1038/047283b0

    Article  Google Scholar 

  13. Lumpkin, G.R.: Physical and chemical characteristics of baddeleyite (monoclinic zirconia) in natural environments: an overview and case study. J. Nucl. Mater. 274, 206–217 (1999). https://doi.org/10.1016/S0022-3115(99)00066-5

    Article  CAS  Google Scholar 

  14. Piconi, C., Maccauro, G.: Zirconia as a ceramic biomaterial. Biomaterials. 20, 1–25 (1999). https://doi.org/10.1016/S0142-9612(98)00010-6

    Article  CAS  Google Scholar 

  15. Guo, X., Waser, R.: Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater. Sci. 51, 151–210 (2006). https://doi.org/10.1016/j.pmatsci.2005.07.001

    Article  CAS  Google Scholar 

  16. Rahmati, M., Mozafari, M.: A critical review on the cellular and molecular interactions at the interface of zirconia-based biomaterials. Ceram. Int. 44, 16137–16149 (2018). https://doi.org/10.1016/j.ceramint.2018.06.196

    Article  CAS  Google Scholar 

  17. Kelly, J.R., Denry, I.: Stabilized zirconia as a structural ceramic: an overview. Dent. Mater. 24, 289–298 (2008). https://doi.org/10.1016/j.dental.2007.05.005

    Article  CAS  Google Scholar 

  18. Roza, G.: Understanding the elements of periodic table, Zirconium. Rosen Publishing Group Inc., New York (2009) ISBN: 978-1435850705

    Google Scholar 

  19. Chevalier, J.: What future for zirconia as a biomaterial? Biomaterials. 27, 535–543 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.034

    Article  CAS  Google Scholar 

  20. Turon-Vinas, M., Anglada, M.: Strength and fracture toughness of zirconia dental ceramics. Dent. Mater. 34, 365–375 (2018). https://doi.org/10.1016/j.dental.2017.12.007

    Article  CAS  Google Scholar 

  21. Garvie, R.C., Hannink, R.H., Pascoe, R.T.: Ceramic steel? Nature. 258, 703–704 (1975). https://doi.org/10.1038/258703a0

    Article  CAS  Google Scholar 

  22. Brog, J.P., Chanez, C.L., Crochet, A., Fromm, K.M.: Polymorphism, what it is and how to identify it: a systematic review. RSC Adv. 3, 16905–16931 (2013). https://doi.org/10.1039/C3RA41559G

    Article  CAS  Google Scholar 

  23. Hannink, R.H.J., Kelly, P.M., Muddle, B.C.: Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83, 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x

    Article  CAS  Google Scholar 

  24. Chevalier, J., Gremillard, L., Virkar, A.V., Clarke, D.R.: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009). https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  CAS  Google Scholar 

  25. Li, P., Chen, I.W., Penner-Hahn, J.E.: Effect of dopants on zirconia stabilization—an X-ray absorption study: I, trivalent dopants. J. Am. Ceram. Soc. 77, 118–128 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb06964.x

    Article  CAS  Google Scholar 

  26. Li, P., Chen, I.W., Penner-Hahn, J.E.: Effect of dopants on zirconia stabilization—an X-ray absorption study: II, tetravalent dopants. J. Am. Ceram. Soc. 77, 1281–1288 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05403.x

    Article  CAS  Google Scholar 

  27. Kohorst, P., Borchers, L., Strempel, J., Stiesch, M., Hessel, T., Bach, F.-W., Hubsch, C.: Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater. 8, 1213–1220 (2012). https://doi.org/10.1016/j.actbio.2011.11.016

    Article  CAS  Google Scholar 

  28. Sulaiman, T.A., Abdulmajeed, A.A., Donovan, T.E., Vallittu, P.K., Narhi, T.O., Lassila, L.V.: The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent. Mater. J. 34, 605–610 (2015). https://doi.org/10.4012/dmj.2015-054

    Article  CAS  Google Scholar 

  29. Gautam, C., Joyner, J., Gautam, A., Rao, J., Vajtai, R.: Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans. 45, 19194–19215 (2016). https://doi.org/10.1039/C6DT03484E

    Article  CAS  Google Scholar 

  30. de Bernardi-Martin, S., Moshtaghioun, B.M., Gomez Garcia, D., Dominguez-Rodrigues, A.: Grain-boundary cation diffusion in ceria tetragonal zirconia determined by constant-strain-rate deformation tests. J. Eur. Ceram. Soc. 34, 4469–4472 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.024

    Article  CAS  Google Scholar 

  31. Lughi, V., Sergo, V.: Low temperature degradation – aging – of zirconia: a critical review of the relevant aspects in dentistry. Dent. Mater. 26, 807–820 (2010). https://doi.org/10.1016/j.dental.2010.04.006

    Article  CAS  Google Scholar 

  32. Dynacer.com. Data sheets Zirconia. http://www.dynacer.com/wp-content/themes/devvine/PDF/Material%20Properties%20datasheet.pdf (2018). Accessed 11 September 2018

  33. Azom.com. Zirconia - physical and mechanical property comparison of the different types of zirconias. https://www.azom.com/article.aspx?ArticleID=940 (2018). Accessed 11 September 2018

  34. Tsukuma, K., Shimada, M.: Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP). J. Mater. Sci. 20, 1178–1184 (1985). https://doi.org/10.1007/BF01026311

    Article  CAS  Google Scholar 

  35. Cousland, G.P., Cui, X.Y., Smith, A.E., Stampfl, A.P.J., Stampfl, C.M.: Mechanical properties of zirconia, doped and undoped yttria-stabilized cubic zirconia from first-principles. J. Phys. Chem. Solids. 122, 51–71 (2018). https://doi.org/10.1016/j.jpcs.2018.06.003

    Article  CAS  Google Scholar 

  36. Eichler, J., Eisele, U., Rodel, J.: Mechanical properties of monoclinic zirconia. J. Am. Ceram. Soc. 87, 1401–1403 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07748.x

    Article  CAS  Google Scholar 

  37. Kuo, C.-W., Shen, Y.-H., Yen, F.-L., Cheng, H.-Z., Hung, I.-M., Wen, S.-B., Wang, M.-C., Stack, M.: Phase transformation behavior of 3 mol% yttria partially-stabilized ZrO2 (3Y–PSZ) precursor powder by an isothermal method. Ceram. Int. 40, 3243–3251 (2014). https://doi.org/10.1016/j.ceramint.2013.09.112

    Article  CAS  Google Scholar 

  38. Li, P., Chen, I.W., Penner-Hahn, J.E.: Effect of dopants on zirconia stabilization—an X-ray absorption study: III, charge-compensating dopants. J. Am. Ceram. Soc. 77, 1289–1295 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb05404.x

    Article  CAS  Google Scholar 

  39. Schnohr, C.S., Ridgway, M.C.: Chapter 1, introduction to X-ray absorption spectroscopy. In: Schnohr, C.S., Ridgway, M.C. (eds.) X-Ray absorption spectroscopy of semiconductors, Springer Series in Optical Sciences 190, pp. 1–26. Springer, Cham (2015). DOI https://doi.org/10.1007/978-3-662-44362-0_1

  40. Escribano, V.S., Lopez, E.F., Panizza, M., Resini, C., Gallardo Amores, J.M., Busca, G.: Characterization of cubic ceria–zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sci. 5, 1369–1376 (2003). https://doi.org/10.1016/j.solidstatesciences.2003.07.001

    Article  CAS  Google Scholar 

  41. Varez, A., Garcia-Gonzalez, E., Sanz, J.: Cation miscibility in CeO2–ZrO2 oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis. J. Mater. Chem. 16, 4249–4256 (2006). https://doi.org/10.1039/B607778A

    Article  CAS  Google Scholar 

  42. Chevalier, J., Gremillard, L.: Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.025

    Article  CAS  Google Scholar 

  43. Becher, P.F., Swain, M.V.: Grain-size-dependent transformation behavior in polycrystalline tetragonal zirconia. J. Am. Ceram. Soc. 75, 493–502 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07832.x

    Article  CAS  Google Scholar 

  44. Simba, B.G., dos Santos, C., Strecker, K., de Almeida Junior, A.A., Adabo, C.L.: Recovery of tetragonal phase from previously transformed Y-TZP. Mater. Res. 19, 829–833 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0426

    Article  CAS  Google Scholar 

  45. Lange, F.F.: Transformation toughening. Part 1 size effects associated with the thermodynamics of constrained transformations. J. Mater. Sci. 17, 225–234 (1982). https://doi.org/10.1007/BF00809057

    Article  CAS  Google Scholar 

  46. De Aza, A.H., Chevalier, J., Fantozzi, G., Schehl, M., Torrecillas, R.: Slow-crack-growth behavior of zirconia-toughened alumina ceramics processed by different methods. J. Am. Ceram. Soc. 86, 115–120 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03287.x

    Article  Google Scholar 

  47. Tsukuma, K., Takahata, T.: Mechanical properties and microstructure of TZP and TZP/Al2O3 composites. Mater. Res. Soc. Symp. Proc. 78, 123–135 (1986). https://doi.org/10.1557/PROC-78-123

    Article  Google Scholar 

  48. Bannister, M.: Science and Technology of Zirconia V. CRC Press, Boca Raton (1993) ISBN: 9781566760737

    Google Scholar 

  49. Yu, C.S., Shetty, D.K.: Transformation zone shape, size, and crack-growth-resistance [R-curve] behavior of ceria-partially-stabilized zirconia polycrystals. J. Am. Ceram. Soc. 72, 921–928 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb06245.x

    Article  CAS  Google Scholar 

  50. Swain, M.V., Rose, L.R.F.: Strength limitations of transformation-toughened zirconia alloys. J. Am. Ceram. Soc. 69, 511–518 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb04785.x

    Article  CAS  Google Scholar 

  51. Studart, A.R., Filser, F., Kocher, P., Gauckler, L.J.: Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent. Mater. 23, 106–114 (2007). https://doi.org/10.1016/j.dental.2005.12.008

    Article  CAS  Google Scholar 

  52. Li, L.-S., Pabst, R.F.: Subcritical crack growth in partially stabilized zirconia (PSZ). J. Mater. Sci. 15, 2861–2866 (1980). https://doi.org/10.1007/BF00550555

    Article  CAS  Google Scholar 

  53. Szutkowska, M., Boniecki, M.: Subcritical crack growth in zirconia-toughened alumina (ZTA) ceramics. J. Mater. Process. Technol. 175, 416–420 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.030

    Article  CAS  Google Scholar 

  54. Schmitt, R., Fett, T., Munz, D.: Cyclic fatigue of zirconia. Fatigue Fract. Eng. Mater. Struct. 19, 1411–1420 (1996). https://doi.org/10.1111/j.1460-2695.1996.tb00177.x

    Article  CAS  Google Scholar 

  55. Zmak, I., Coric, D., Mandic, V., Cirkovic, L.: Hardness and indentation fracture toughening of slip cast alumina and alumina-zirconia ceramics. Materials. 13, 122 (2020). https://doi.org/10.3390/ma13010122

    Article  CAS  Google Scholar 

  56. Marshall, D.B., Evans, A.G., Drory, M.: Transformation toughening in ceramics. In: Bradt, R.C., Evans, A.G., Hasselman, D.P.H., Lange, F.F. (eds.) Fracture Mechanics of Ceramics, vol. 6, pp. 289–307. Plenum Press, New York (1983) ISBN: 0306410222

    Google Scholar 

  57. Bocanegra-Bernal, M.H., Garcia-Reyes, A., Dominguez-Rios, C., Reyes-Rojas, A., Aguilar-Elguezabal, A., Echeberria, J.: Towards improving low-temperature degradation of zirconia/alumina ceramics via in situ formation of an Al2O3 functional surface layer through sintering in the presence of graphite powder. J. Alloys Compd. 818, 152840 (2020). https://doi.org/10.1016/j.jallcom.2019.152840

    Article  CAS  Google Scholar 

  58. AllThingsBiomaterials.org. The Prozyr Femoral Ball Re-call. http://allthingsbiomaterials.org/archives/170 (2020). Accessed 19 January 2020

  59. Lawson, S.: Environmental degradation of zirconia ceramics. J. Eur. Ceram. Soc. 15, 485–502 (1995). https://doi.org/10.1016/0955-2219(95)00035-S

    Article  CAS  Google Scholar 

  60. Sergo, V., Pompe, W., Clarke, D.R.: Deformation bands in ceria-stabilized tetragonal zirconia/alumina: I. Measurement of internal stresses. J. Am. Ceram. Soc. 78, 633–640 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08224.x

    Article  CAS  Google Scholar 

  61. Lange, F.F., Dunlpo, G.L., Davis, B.I.: Degradation during ageing of transformation toughened ZrO2-Y2O3 materials at 250 °C. J. Am. Ceram. Soc. 69, 237–240 (1986). https://doi.org/10.1111/j.1151-2916.1986.tb07415.x

    Article  CAS  Google Scholar 

  62. Yoshimura, M., Noma, T., Kawabata, K., Somiya, S.: Role of H2O on the degradation process of Y-TZP. J. Mater. Sci. Lett. 6, 465–467 (1987). https://doi.org/10.1007/BF01756800

    Article  CAS  Google Scholar 

  63. Deville, S., Chevalier, J., Dauvergne, C., Fantozzi, G., Bartolomé, J.F., Moya, J.S., Torrecillas, R.: Microstructural investigation of the aging behavior of (3Y-TZP)-Al2O3 composites. J. Am. Ceram. Soc. 88, 1273–1280 (2005). https://doi.org/10.1111/j.1551-2916.2005.00221.x

    Article  CAS  Google Scholar 

  64. Lee, J.K., Kim, H.: Surface crack initiation in 2Y-TZP ceramics by low temperature aging. Ceram. Int. 20, 413–418 (1994). https://doi.org/10.1016/0272-8842(94)90028-0

    Article  CAS  Google Scholar 

  65. Patil, N.A., Kandasubramanian, B.: Biological and mechanical enhancement of zirconium dioxide for medical applications. Ceram. Int. 46, 4041–4057 (2020). https://doi.org/10.1016/j.ceramint.2019.10.220

    Article  CAS  Google Scholar 

  66. Kelly, P.M., Rose, L.R.F.: The martensitic transformation in ceramics – its role in transformation toughening. Prog. Mater. Sci. 47, 463–557 (2002). https://doi.org/10.1016/S0079-6425(00)00005-0

    Article  CAS  Google Scholar 

  67. Varghese, G., Moral, M., Castro-Garcia, M., Lopez-Lopez, J.J., Marin-Rueda, J.R., Yague-Alcaraz, V., Hernandez-Afonso, L., Ruiz-Morales, J.C., Canales-Vazquez, J.: Fabrication and characterization of ceramics via low-cost DLP 3D printing. Bol. Soc. Esp. Cerám. Vidrio. 57, 9–18 (2018). https://doi.org/10.1016/j.bsecv.2017.09.004

    Article  Google Scholar 

  68. Zhu, W., Nakashima, S., Matsuura, M., Gu, H., Marin, E., Pezzotti, G.: Raman and X-ray photoelectron spectroscopic characterizations of thermal stability of 3mol% yttria stabilized zirconia ceramics. J. Eur. Ceram. Soc. 39, 4928–4935 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.056

    Article  CAS  Google Scholar 

  69. Schunemann, F.H., Galarraga-Vinueza, M.E., Magini, R., Fredel, M., Silva, F., Souza, J.C.M., Zhang, Y., Herniques, B.: Zirconia surface modifications for implants dentistry. Mater. Sci. Eng. C. 98, 1294–1305 (2019). https://doi.org/10.1016/j.msec.2019.01.062

    Article  CAS  Google Scholar 

  70. Berni, M., Lopomo, N., Marchiori, G., Gambardella, A., Boi, M., Bianchi, M., Visani, A., Pavan, P., Russo, A., Marcacci, M.: Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications. Mater. Sci. Eng. C. 62, 643–655 (2016). https://doi.org/10.1016/j.msec.2016.02.014

    Article  CAS  Google Scholar 

  71. Moos, R.: A brief overview on automotive exhaust gas sensors based on electroceramics. Int. J. Appl. Ceram. Technol. 2, 401–413 (2005). https://doi.org/10.1111/j.1744-7402.2005.02041.x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Declarations

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisticò, R. Zirconium oxide and the crystallinity hallows. J Aust Ceram Soc 57, 225–236 (2021). https://doi.org/10.1007/s41779-020-00529-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00529-2

Keywords

Navigation