Skip to main content
Log in

Preparation of cordierite powder by chemical coprecipitation–rotation evaporation and solid reaction sintering

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

At present, the formation conditions of cordierite were relatively harsh, the formation temperature was close to the decomposition temperature, and it was difficult to control the sintering temperature. In order to solve the problem of cordierite synthesis, cordierite powders were synthesized by chemical coprecipitation–rotation evaporation and solid reaction sintering. The thermodynamics, thermal analysis, phase composition, specific surface area, morphology, and grain size distribution of the samples sintered at different temperatures were systematically studied. SEM micrographs showed that the crystal structural evolution of cordierite was divided into three processes; the temperatures of 1000 °C (the formation of hexagonal flake–like grain) and 1200 °C (the formation of flaky texture grain) were two important sintering transition points. The specific surface area of the sample sintered at 1400 °C was 1.76 m2/g, and the grain size was well developed with the range of 196.5–222.7 nm. Phase analysis revealed that the main crystal phase of samples sintered at 1200 °C was cordierite phase and a little spinel phase and mullite phase, and the peak intensity of the characteristic peaks at 1400 °C was more intense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kobayashi, Y., Katayama, M., Kato, M., Kuramochi, S.: Effect on microstructure on the thermal expansion coefficient of sintered cordierite prepared from sol mixtures. J. Am. Ceram. Soc. 96(6), 1863–1868 (2013)

    Article  CAS  Google Scholar 

  2. Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., Sebayang, K.: Preparation of refractory cordierite using amorphous rice husk silica for thermal insulation purposes. Ceram. Int. 42, 8431–8437 (2016)

    Article  CAS  Google Scholar 

  3. Kuscer, D., Bantan, I., Hrovat, M., Mali, B.: The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 37, 739–746 (2017)

    Article  CAS  Google Scholar 

  4. Kolli, M., Hamidouche, M., Fantozzi, G., Chevalier, J.: Elaboration and characterization of a refractory based on Algerian kaolin. Ceram. Int. 33, 1435–1443 (2007)

    Article  CAS  Google Scholar 

  5. Orosco, P., Del, M., Ruiz, C., González, J.: Synthesis of cordierite by dolomite and kaolinitic clay chlorination. Study of the phase transformations and reaction mechanism. Powder Technol. 267, 111–118 (2014)

    Article  CAS  Google Scholar 

  6. Shaohong, W., Haoran, L., Zhaoxia, H.: Sol-emulsion-gel synthesis of cordierite ceramics for high-frequency multilayer chip inductors. Ceram. Int. 36, 991–997 (2013)

    Google Scholar 

  7. Janos, R., Lazau, I., Pacurariu, C.: Solution combustion synthesis of α-cordierite. J. Alloys Compd. 480, 702–705 (2009)

    Article  Google Scholar 

  8. Menchi, A.M., Scian, A.N.: Mechanism of cordierite formation obtained by the sol–gel technique. Mater. Lett. 59, 2664–2667 (2005)

    Article  CAS  Google Scholar 

  9. Cheraghi, A., Shoushtarizadeh, H., Malekfar, R., Alizadeh, O.: Synthesis of <alpha>-cordierite nanoparticles from bentonite using thermal shock assisted solid-state reaction method. Adv. Powder Technol. 29, 124–129 (2018)

    Article  CAS  Google Scholar 

  10. El-Buaishi, N.M., Veljović, D., Jokić, B., Zeljko, R., Steins, I., Janać ković, D., Petrović, R.: Conventional and spark-plasma sintering of cordierite powders synthesized by sol–gel methods. Ceram. Int. 39, 5845–5854 (2013)

    Article  Google Scholar 

  11. de Almeida, E.P., de Brito, I.P., Ferreira, H.C., de Lucena Lira, H., de Lima Santana, L.N., de Araújo Neves, G.: Cordierite obtained from compositions containing kaolin waste, talc and magnesium oxide. Ceram. Int. 44, 1719–1725 (2018)

    Article  Google Scholar 

  12. Kuscer, D., Bantan, I., Hrovat, M., Malί, B.: The microstructure, coefficient of thermal expansion and flexural strength of cordierite ceramics prepared from alumina with different particle sizes. J. Eur. Ceram. Soc. 37, 739–746 (2017)

    Article  CAS  Google Scholar 

  13. Zhang, L., Wu, Y., Zhang, L., Wang, Y., Li, M.: Synthesis and characterization of mesoporous alumina with high specific area via coprecipitation method. Vacuum. 133, 1–6 (2016)

    Article  Google Scholar 

  14. Menchi, A., Scian, A.: Mechanism of cordierite formation obtained by the sol–gel technique. Mater. Lett. 59, 2664–2667 (2005)

    Article  CAS  Google Scholar 

  15. Liu, Y., Liu, H., Zhang, Z., Lu, H., Chen, Y.: In-situ Hydrothermal synthesis of ZSM-5/cordierite monolith catalyst. J. Chin. Ceram. Soc. 43, 926–933 (2015)

    CAS  Google Scholar 

  16. Wang, S., Lu, H., Zhaoxia, H., Hu, X., Changlei, N., Xue, Z., Wang, H., Wang, C.: Effect of Bi2O3 on sintering and dielectric properties of cordierite ceramics synthesized by sol-emulsion-gel technique. Rare Metal Mater. Eng. 40, 360–363 (2011)

    Google Scholar 

  17. Potdar, H.S., Vijayanand, S., Mohaideen, K.K., et al.: A simple chemical co-precipitation/calcination route for the synthesis of simulated synroc-B and synroc-C powders. Mater. Chem. Phys. 123, 695–699 (2010)

    Article  CAS  Google Scholar 

  18. Najafi, A.: Development of high oxidation resistant coating of nanostructured MgO on carbon nanotubes via simple precipitation technique in Mg/CO gas system. Ceram. Int. 42, 18573–18578 (2016)

    Article  CAS  Google Scholar 

  19. Nguyen, T.A., Tr Nguyen, L.T., Bui, V.X., et al.: Optical and magnetic properties of HoFeO3 nanocrystals prepared by a simple co-precipitation method using ethanol. J. Alloys Compd. 8345, 155098 (2020)

    Article  Google Scholar 

  20. Castro-Rodríguez, R., Mendez-Gamboa, J., Perez-Quintana, I., Medina-Ezquivel, R.: CdS thin films growth by fast evaporation with substrate rotation. Appl. Surf. Sci. 257, 9480–9484 (2011)

    Article  Google Scholar 

  21. Zhang, B., Ma, B., Zhu, Q., et al.: In-situ formation and densification of MgAl2O4-Y3Al5O12 and MgAl2O4-MgNb2O6 ceramics via a single-stage SRS process. Sci. Sinter. 49(3), 285–297 (2017)

    Article  CAS  Google Scholar 

  22. Ma, B., Chang, S., Ren, X., et al.: Preparation and properties of porous mullite ceramics with high-closed porosity and high strength from fly ash via reaction synthesis process. J. Alloys Compd. 803, 981–991 (2019)

    Article  CAS  Google Scholar 

  23. Chen, Z.: Chemical thermodynamics of refractories [M], pp. 642–655. Metallurgical Industry Press, Beijing (2005)

    Google Scholar 

  24. Yuan, L., Ma, B., Yulong, D., et al.: Characterization and properties of ZrO2-forsterite composites from zircon and magnesite via reaction sintering. J. Ceram. Process. Res. 18(5), 352–356 (2017)

    Google Scholar 

  25. Luo, X., Dianli, Q., Zhang, G., et al.: Structure characterization of cordierite synthesized from decomposed magnesite pyrophyllite. Chinese J. Inorg. Chem. 27(3), 434–438 (2011)

    CAS  Google Scholar 

  26. Acimovic, Z., Pavlovic, L., Trumbulovic, L., Andric, L., Stamatovic, M.: Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry. Mater. Lett. 57, 2651–2656 (2003)

    Article  CAS  Google Scholar 

  27. Zhou, J., Xia, Z., Chen, M., Molokeev, M.S., Liu, Q.: New insight into phase formation of MxMg2Al4+xSi5xO18:Eu2+ solid solution phosphors and its luminescence properties. Sci. Rep. 5, 12149 (2015)

Download references

Funding

The work is supported by National Natural Science Foundation of China (51772139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Q., Luo, X., Liu, X. et al. Preparation of cordierite powder by chemical coprecipitation–rotation evaporation and solid reaction sintering. J Aust Ceram Soc 56, 1575–1582 (2020). https://doi.org/10.1007/s41779-020-00496-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00496-8

Keywords

Navigation