Skip to main content
Log in

Hydrophobic effect evolution dependent manipulation of ZnO nanostructures morphology

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The morphologies of different ZnO nanostructures (ZNSs) films (deposited on glass substrates) are investigated using simple and low-cost techniques. Two synthesis techniques, i.e., direct hydrothermal technique and a combination of pulsed-laser ablation under liquid and hydrothermal (PLAL-H) technique, are employed. The first technique (direct hydrothermal technique) is used to fabricate three-dimensional (3D) flower-like ZNSs and one-dimensional (1D) solid rod- along with enclosed tube-like ZNSs under different pH conditions/values. Moreover, a zero-dimensional (0D) ZnO nanoparticles (ZNPs)-based film is prepared by PLAL-H technique. The influence of tuning morphology of ZNSs films on the hydrophobic effect is examined by XRD, FE-SEM, and photoluminescence (PL). XRD patterns confirmed the polycrystalline structures of ZNSs films. FE-SEM explored the morphology transformation from 3D flower-like to 1D solid rod- and enclosed tube-like ZNSs films by varying the pH values from 10.5 to 5.7. The PL spectra revealed a higher surface area and deep-level defect density related to the ZnO morphology. Depending on the surface contact angle measurements, the hydrophobic performance of flower-like ZNSs is much superior than 1D solid rod-like, enclosed tube-like, and 0D ZNPs films. The super-hydrophobic effect of flower-like ZnO is attributed to the synergism of regular formed and higher density of ZNSs. Therefore, it is inferred that the successful controllable morphology of ZNSs film under mild deposition conditions could play a crucial role to get a superior hydrophobic behavior of ZNSs film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Pal, S., Mondal, S., Maity, J.: in Situ Generation and Deposition of ZnO Nanoparticles on Cotton Surface to Impart Hydrophobicity: Investigation of Antibacterial Activity. Mater. Technol. 1–8 (2018)

  2. Shaban, M., Mohamed, F., Abdallah, S.: Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst. Sci. Rep. 8(1), 3925 (2018)

    Article  Google Scholar 

  3. Gawali, S.A., Mahadik, S.A., Pedraza, F., Bhosale, C., Pathan, H.M., Jadkar, S.R.: Synthesis of zinc oxide nanorods from chemical bath deposition at different pH solutions and impact on their surface properties. J. Alloys Compd. 704, 788–794 (2017)

    Article  CAS  Google Scholar 

  4. Beshkar, F., Khojasteh, H., Salavati-Niasari, M.: Flower-like CuO/ZnO Hybrid Hierarchical Nanostructures Grown on Copper Substrate: Glycothermal Synthesis, Characterization, Hydrophobic and Anticorrosion Properties. Materials. 10(7), 697 (2017)

    Article  Google Scholar 

  5. Shyu, Y.-C., Tsai, S.C., Su, W.M., Lu, C.-C., Weng, C.-Y., Shan, L.Y., Hao, H.C., Lin, J.-J., Lin, C.F., Yu, C.-T.R.: ZnO Nanoflakes on Pb Plates with Antibacterial Effects by Electrochemical and Hydrothermal Deposition. J. New Mater. Electrochem. Syst. 19(4), (2016)

  6. Panthi, G., Park, M., Kim, H.-Y., Lee, S.-Y., Park, S.-J.: Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: a review. J. Ind. Eng. Chem. 21, 26–35 (2015)

    Article  CAS  Google Scholar 

  7. Zhu, L., Li, Y., Zeng, W.: Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)

    Article  CAS  Google Scholar 

  8. Wang, H., Liang, L., Cheng, X., Luo, Y., Sun, S.: Facile fabrication of porous ZnS and ZnO films by coaxial electrospinning for highly efficient Photodegradation of organic dyes. Photochem. Photobiol. 94(1), 17–26 (2018)

    Article  CAS  Google Scholar 

  9. Islam, S., Bakhtiar, H., Abbas, K.N., Riaz, S., Naseem, S., Johari, A.R.B.: Grown of highly porous ZnO-nanoparticles by pulsed laser ablation in liquid technique for sensing applications. J. Aust. Ceram. Soc. 55(3), 765–771 (2019)

    Article  CAS  Google Scholar 

  10. S. Adachi, "Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information." Springer Science & Business Media, (1999)

    Book  Google Scholar 

  11. Le, C.H., Nguyen, O.T., Nguyen, H.S., Pham, L.D., Hoang, C.V.: Controllable synthesis and visible-active photocatalytic properties of au nanoparticles decorated urchin-like ZnO nanostructures. Curr. Appl. Phys. 17(11), 1506–1512 (2017)

    Article  Google Scholar 

  12. Agrawal, N., Munjal, S., Ansari, M.Z., Khare, N.: Superhydrophobic palmitic acid modified ZnO nanoparticles. Ceram. Int. 43(16), 14271–14276 (2017)

    Article  CAS  Google Scholar 

  13. Lai, D., Kong, G., Che, C.: Synthesis and corrosion behavior of ZnO/SiO2 nanorod-sub microtube superhydrophobic coating on zinc substrate. Surf. Coat. Technol. 315, 509–518 (2017)

    Article  CAS  Google Scholar 

  14. Li, H., Liu, H., Li, Y., Liu, Q.: Controllable growth of the ZnO Nanorod arrays on the Al substrate and their reversible wettability transition. J. Nanotechnol. 2017, 4 (2017)

    Google Scholar 

  15. Guan, K.: Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 191(2–3), 155–160 (2005)

    Article  CAS  Google Scholar 

  16. Abbas, K.N., Bidin, N., Sabry, R.S.: Controllable ZnO nanostructures evolution via synergistic pulsed laser ablation and hydrothermal methods. Ceram. Int. 42(12), 13535–13546 (2016)

    Article  CAS  Google Scholar 

  17. Abbas, K.N., Bidin, N.: Morphological driven photocatalytic activity of ZnO nanostructures. Appl. Surf. Sci. 394, 498–508 (2017)

    Article  CAS  Google Scholar 

  18. Liu, B., Zeng, H.C.: Direct growth of enclosed ZnO nanotubes. Nano Res. 2(3), 201–209 (2009)

    Article  CAS  Google Scholar 

  19. Wahab, R., Ansari, S., Kim, Y.S., Song, M., Shin, H.-S.: The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 255(9), 4891–4896 (2009)

    Article  CAS  Google Scholar 

  20. Samaele, N., Amornpitoksuk, P., Suwanboon, S.: Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method. Powder Technol. 203(2), 243–247 (2010)

    Article  CAS  Google Scholar 

  21. Ahn, M.-W., Park, K.-S., Heo, J.-H., Park, J.-G., Kim, D.-W., Choi, K.J., Lee, J.-H., Hong, S.-H.: Gas Sensing Properties of Defect-Controlled ZnO-Nanowire Gas Sensor. Appl. Phys. Lett. 93(26), 263103 (2008)

    Article  Google Scholar 

  22. Wang, H., Xie, J., Yan, K., Duan, M.: Growth mechanism of different morphologies of ZnO crystals prepared by hydrothermal method. J. Mater. Sci. Technol. 27(2), 153–158 (2011)

    Article  Google Scholar 

  23. Yildiz, A., Uzun, S., Serin, N., Serin, T.: Influence of grain boundaries on the figure of merit of undoped and Al, in, Sn doped ZnO thin films for photovoltaic applications. Scr. Mater. 113, 23–26 (2016)

    Article  CAS  Google Scholar 

  24. Yildiz, A., Cansizoglu, H., Turkoz, M., Abdulrahman, R., Al-Hilo, A., Cansizoglu, M., Demirkan, T., Karabacak, T.: Glancing angle deposited Al-doped ZnO nanostructures with different structural and optical properties. Thin Solid Films. 589, 764–769 (2015)

    Article  CAS  Google Scholar 

  25. Abbas, K.N., Bidin, N., Sabry, R.S., Al-Asedy, H.J., Al-Azawi, M.A., Islam, S.: Structures and emission features of high-density ZnO micro/nanostructure grown by an easy hydrothermal method. Mater. Chem. Phys. 182, 298–307 (2016)

    Article  CAS  Google Scholar 

  26. Peng, C., Guo, J., Yang, W., Shi, C., Liu, M., Zheng, Y., Xu, J., Chen, P., Huang, T., Yang, Y.: Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. J. Alloys Compd. 654, 371–378 (2016)

    Article  CAS  Google Scholar 

  27. Awad, M., Ahmed, A., Khavrus, V., Ibrahim, E.: Tuning the morphology of ZnO nanostructure by in doping and the associated variation in electrical and optical properties. Ceram. Int. 41(8), 10116–10124 (2015)

    Article  CAS  Google Scholar 

  28. Chee, C.Y., Nadarajah, K., Siddiqui, M.K., Wong, Y.: Optical and structural characterization of solution processed zinc oxide nanorods via hydrothermal method. Ceram. Int. 40(7), 9997–10004 (2014)

    Article  CAS  Google Scholar 

  29. Li, H., Jiao, S., Gao, S., Li, H., Li, L.: Dynamically controlled synthesis of different ZnO nanostructures by a surfactant-free hydrothermal method. CrystEngComm. 16(38), 9069–9074 (2014)

    Article  CAS  Google Scholar 

  30. Fageria, P., Gangopadhyay, S., Pande, S.: Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4(48), 24962–24972 (2014)

    Article  CAS  Google Scholar 

  31. Patra, S., Sarkar, S., Bera, S., Ghosh, R., Paul, G.: Hydrophobic Self-Cleaning Surfaces of ZnO Thin Films Synthesized by Sol–Gel Technique. J. Phys. D. Appl. Phys. 42(7), 075301 (2009)

    Article  Google Scholar 

  32. Chen, H., He, Y.Y., Lin, M.H., Lin, S.R., Chang, T.W., Lin, C.F., Yu, C.-T.R., Sheu, M.L., Chen, C.B., Lin, Y.-S.: Characterizations of zinc oxide nanorods incorporating a graphene layer as antibacterial nanocomposites on silicon substrates. Ceram. Int. 42(2), 3424–3428 (2016)

    Article  CAS  Google Scholar 

  33. Qian, S., Cheng, Y.F.: Fabrication of micro/nanostructured superhydrophobic ZnO-alkylamine composite films on steel for high-performance self-cleaning and anti-adhesion of bacteria. Colloids Surf. A Physicochem. Eng. Asp. 544, 35–43 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Higher Education of Iraq represented by Mustansiriya University and the Malaysian Ministry of Education represented by the University of Technology, Malaysia (UTM), for their support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khaldoon N. Abbas or Noriah Bidin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, K.N., Sabry, R.S., Alkareem, R.A. et al. Hydrophobic effect evolution dependent manipulation of ZnO nanostructures morphology. J Aust Ceram Soc 56, 1377–1384 (2020). https://doi.org/10.1007/s41779-020-00481-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00481-1

Keywords

Navigation