Skip to main content
Log in

Synthesis and characterization of BaFe12O19-CoFe2O4 ferrite composite for high-frequency antenna application

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Recently, ferrite composite ceramics have received much attention for high-frequency device applications as the composite has both dielectric and magnetic properties, good chemical stability, and high electrical resistivity. M-type hexagonal ferrite BaFe12O19 (BaM) and cubic spinel ferrite CoFe2O4 (CoF) composites; (BaM)1−x(CoF)x (x = 0.0, 0.25, 0.50, 0.75, and 1.0) were successfully synthesized by co-precipitation method. X-ray diffraction (XRD) analysis confirmed the formation of pure-phase BaM ferrite at 800 °C and CoF ferrite at 600 °C, respectively. The XRD analysis of composite ferrite showed the presence of both BaM and CoF ferrite phases in the composite. The composites were sintered at 1100 °C/4 h. The composite with x = 0.25 composition showed the most compact microstructure structure and higher bulk density compared to other composites. The composite (with x = 0.25) also showed the highest permittivity (~ 15), permeability (~ 13), and antenna miniaturization factor (~ 14) at 500 MHz due to mainly better densification. The permeability of composite was almost stable up to about 500 MHz. The coercivity was lowest in the composite with x = 0.25 composition indicating a change of hard magnetic behavior of BaM ferrite into a soft magnetic character after composite formation, which may be due to the formation of enlarged grain of BaM in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris, V.G.: Modern Microwave Ferrites. IEEE Trans Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  2. Mossallaei, H., Sarabandi, K.: Magneto-dielectrics in electromagnetics: concept and applications. IEEE Trans Antennas Propag. 52, 1558–1567 (2004)

    Article  Google Scholar 

  3. Kong, L.B., Li, Z.W., Lin, G.Q., Gan, Y.B.: Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design. IEEE Trans Magn. 43, 6–10 (2007)

    Article  CAS  Google Scholar 

  4. Topfer, J., Murbe, J., Angermann, A., Kracunovska, S., Barth, S., Bechtold, F.: Soft ferrite materials for multilayer inductors. Int J Appl Ceram Technol. 3, 455–462 (2006)

    Article  Google Scholar 

  5. Smit, J., Wijn, H.P.J.: Ferrites. Eindhoven, Netherlands (1959)

    Google Scholar 

  6. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci. 57, 1191–1334 (2012)

    Article  CAS  Google Scholar 

  7. Jonker, G.H., Wijn, H.P.J., Braun, P.B.: Ferroxplana, hexagonal ferromagnetic iron-oxide compounds for very high frequency. Philips Tech Rev. 18, 145 (1956)

    Google Scholar 

  8. Bai, Y., Zhou, J., Gui, Z., Yue, Z., Li, L.: Preparation and magnetic characterization of Y-type hexaferrites containing zinc, cobalt and copper. Mater Sci Eng B. 99, 266–269 (2003)

    Article  Google Scholar 

  9. Peng, Y., Wu, X., Chen, Z., Liu, W., Wang, F., Wang, X., Feng, Z., Chen, Y., Harris, V.G.: BiFeO3 tailored low loss M-type hexaferrite composites having equivalent permeability and permittivity for very high frequency applications. J Alloys Compd. 630, 48–53 (2015)

    Article  CAS  Google Scholar 

  10. Lee, J., Hong, Y., Lee, W., Abo, G.S., Park, J., Neveu, N., et al.: Soft M-type hexaferrite for very high frequency miniature antenna applications. J Appl Phys. 111, 07A520 (2012)

    Article  Google Scholar 

  11. Fujii, S., Wakamatsu, K., Satoh, H., Yamamoto, S.: Wide bandwidth CuO - modified Ba2Co2Fe12O22 ferrite antenna. IEEE Antennas Wirel Propag Lett. 15, 1171–1174 (2016)

    Article  Google Scholar 

  12. Saini, A., Rana, K., Thakur, A., Thakur, P., Mattei, L.J., Queffelec, P.: Low loss composite nano ferrite with matching permittivity and permeability in UHF band. Mater Res Bull. 76, 94–99 (2016)

    Article  CAS  Google Scholar 

  13. Qu, W., Wang, X.H., Li, L.: Preparation and performance of NiCuZn – Co2Y composite ferrite material. Mater Sci Eng B. 99, 274–277 (2003)

    Article  Google Scholar 

  14. Zheng, Z., Zhang, H., Yang, Q., Jia, L.: Enhanced high-frequency properties of NiZn ferrite ceramic with Co2Z-hexaferrite addition. J Am Ceram Soc. 97(7), 2016–2019 (2014)

    Article  CAS  Google Scholar 

  15. Hsiang, H.I., Cheng, P.W., Yen, F.S.: Low temperature firing of Co2Y–NiCuZn ferrite composites. Ceram Int. 38, 4915–4921 (2012)

    Article  CAS  Google Scholar 

  16. Zheng, Z., Zhang, H., Xiao, J., Bai, F.: Low loss NiZn/Co2Z composite ferrite with almost equal values of permeability and permittivity for antenna applications. IEEE Trans Magn. 49, 7 (2013)

    Article  Google Scholar 

  17. Yang, H., Zhang, G., Lin, Y., Han, N., Wang, F.: Synthesis and electromagnetic characteristics of Co2Z/Co2Y composite material. Mater Lett. 161, 690–693 (2015)

    Article  CAS  Google Scholar 

  18. Yang, H., Liu, M., Lin, Y., Yang, Y.: Simultaneous enhancements of remanence and (BH)max in BaFe12O19/CoFe2O4 nanocomposite powders. J Alloys Compd. 631, 335–339 (2015)

    Article  CAS  Google Scholar 

  19. Hoque, M., Srivastava, C., Kumar, V., Venkatesh, N., Das, H.N., Saha, D.K., Chattopadhyay, K.: Exchange-spring mechanism of soft and hard ferrite nanocomposites. Mater Res Bull. 48, 2871–2877 (2013)

    Article  Google Scholar 

  20. Xia, A., Jin, C., Du, D., Zhu, G.: Comparative study of structural and magnetic properties of NiZnCu ferrite powders prepared via chemical coprecipitation method with different coprecipitators. J Magn Magn Mater. 323, 1682–1685 (2011)

    Article  CAS  Google Scholar 

  21. Janasi, S.R., Emura, M., Landgraf, F.J.G., Rodrigues, D.: The effects of synthesis variables on the magnetic properties of coprecipitated barium ferrite powders. J Magn Magn Mater. 238, 168–172 (2002)

    Article  CAS  Google Scholar 

  22. Hsiang, H.I., Yao, R.Q.: Hexagonal ferrite powder synthesis using chemical coprecipitation. Mater Chem Phys. 104, 1–4 (2007)

    Article  CAS  Google Scholar 

  23. Hsiang, H.I., Yao, R.Q.: Formation mechanism of 3BaO·2CoO·12Fe2O3 powder synthesized using chemical coprecipitation. J Alloys Compd. 453, 366–370 (2008)

    Article  CAS  Google Scholar 

  24. Rahaman, M.N.: Sintering of Ceramics. CRC Press, Boca Raton (2008)

    Google Scholar 

  25. Manafi, S.A., Joughehdoust, S., Kiahosseini, S.R., Farahbakhsh, I.: Optimization of mechanical alloying parameters for synthesis of nanostructure hexagonal BaFe12O19. J Aust Ceram Soc. 55(2), 371–379 (2019)

    Article  CAS  Google Scholar 

  26. Dho, J., Lee, E.K., Park, J.Y., Hur, N.H.: Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19. J Magn Magn Mater. 285, 164–168 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Institute of Technology, Rourkela, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Japes Bera.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polley, K., Alam, T. & Bera, J. Synthesis and characterization of BaFe12O19-CoFe2O4 ferrite composite for high-frequency antenna application. J Aust Ceram Soc 56, 1179–1186 (2020). https://doi.org/10.1007/s41779-020-00477-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00477-x

Keywords

Navigation