Skip to main content
Log in

Influence of selenium dioxide (SeO2) on properties of bioglass in SiO2-Na2O-CaO-P2O5 system

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The influence of selenium dioxide on bioglass in (45.0-x) SiO2 24.5Na2O 24.5CaO 6.0P2O5 xSeO2 (x = 0.0, 0.5, 1.0, 1.5, and 2.0 wt%) system was investigated by preparing the glass through conventional melting and annealing method. The glass transition temperature (Tg), crystallization temperature (Tc), and density of prepared glasses were measured by differential thermal analysis and Archimedes’ principle respectively. The structural and microstructure analyses of glasses were characterized by Raman spectroscopy, Fourier transformed infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The formation of hydroxy apatite carbonate (HCA) layer for glasses was investigated by Raman spectroscopy, FTIR, SEM with EDS, pH measurement, ion concentrations analysis, and (%) weight loss after immersion in simulated body fluid (SBF) for 10 h to 14 days at 37.5°C. Experimental results showed that SeO2 substitution for SiO2 in the glass had increased glass density and molar volume whereas network connectivity was decreased. The addition of selenium oxide reduced the glass transition temperature and also crystallization temperature. The FTIR study of glass confirmed the P–O bonding after immersion for 14 days in SBF, which was also identified in the Raman spectroscopy. SEM of the 14 days immersed sample showed the formation of cauliflower like morphology of HA particles on the glass. pH and ion concentrations analysis also confirmed the formation of HCA layer after 14 days of immersion in SBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hench, L.L., Spinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanism at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2(1), 117–143 (1971)

    Article  Google Scholar 

  2. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(1), 1487–1510 (1991)

    Article  CAS  Google Scholar 

  3. Meplan, C., Crosley, L.K., Nicol, F., Beckett, G.J., Howie, A.F., Hill, K.E., Horgan, G., Mathers, J.C., Arthur, J.R., Hesketh, J.E.: Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J. 21(12), 3063–3074 (2007)

    Article  CAS  Google Scholar 

  4. Zeng, H., Cao, J.J., Combs, G.F.: Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients. 5, 97–110 (2013)

    Article  CAS  Google Scholar 

  5. McDowell, L.R.: Minerals in Animal and Human Nutrition. Elsevier Science, Netherlands (2003)

    Google Scholar 

  6. Yang, J., Huang, K., Qin, S., Wu, X., Zhao, Z., Chen, F.: Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig. Dis. Sci. 54(2), 246–254 (2009)

    Article  CAS  Google Scholar 

  7. Hiraoka, K., Komiya, S., Hamada, T., Zenmyo, M., Inoue, A.: Osteosarcoma cell apoptosis induced by selenium. J. Orthop. Res. 19(5), 809–814 (2001)

    Article  CAS  Google Scholar 

  8. Rayman, M.P.: The importance of selenium in human health. Lancet. 356, 233–241 (2000)

    Article  CAS  Google Scholar 

  9. Moreno-Reyes, R., Egrise, D., Neve, J., Pasteels, J.L., Schoutens, A.: Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J. Bone Miner. Res. 16, 1556–1563 (2001)

    Article  CAS  Google Scholar 

  10. Tran, P.A., Webster, T.J.: Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int. J. Nanomedicine. 3, 391–396 (2008)

    CAS  Google Scholar 

  11. Wang, X., Zhang, Y., Ma, Y., Chen, D., Yang, H., Li, M.: Selenium-containing mesoporous bioactive glass particles: physicochemical and drug delivery properties. Ceram. Int. 42(2), 3609–3617 (2016)

    Article  CAS  Google Scholar 

  12. Trandafir, D.L., Ponta, O., Ciceo-Lucacel, R., Simon, V.: Effects of sodium and potassium ions on a novel SeO2-B2O3-SiO2-P2O5-CaO bioactive system. J. Mol. Struct. 1080, 111–116 (2015)

    Article  CAS  Google Scholar 

  13. Karan, R., Maiti, P.K., Das, K.: Effect of strontium oxide (SrO) on the microstructure and bioactivity of melt derived bioactive silicate glass. J. Indian Chem. Soc. 95, 607–616 (2018)

    CAS  Google Scholar 

  14. O’Donnell, M.D.: Melt-derived bioactive glass. In: Jones, J.R., Clare, A.G. (eds.) Bio-Glasses an Introduction, vol. 1, pp. 13–27. Wiley, UK (2012)

    Chapter  Google Scholar 

  15. Kokubo, T., Takadama, H.: Biomaterials. 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  16. Moustafa, F.A., Abdel-Baki, M., Fayad, A.M., El-Diasty, F.: Role of mixed valence effect and orbital hybridization on molar volume of heavy metal glass for ionic conduction pathways augmentation. Am. J. Mater. Sci. 4(3), 119–126 (2014)

    Google Scholar 

  17. Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J. Non-Cryst. Solids. 356, 2546–2551 (2010)

    Article  CAS  Google Scholar 

  18. Moimas, L., Rosa, G.D., Sergo, V., Schmid, C.: Bioactive porous scaffolds for tissue engineering applications: investigation on the degradation process by Raman spectroscopy and scanning electron microscopy. J. Appl. Biomater. Biomech. 4(2), 102–109 (2006)

    CAS  Google Scholar 

  19. Bellucci, D., Bolelli, G., Cannillo, V., Cattini, A., Sola, A.: In situ Raman spectroscopy investigation of bioactive glass reactivity: simulated body fluid solution vs TRIS-buffered solution. Mater. Charact. 62, 1021–1028 (2011)

    Article  CAS  Google Scholar 

  20. O’Donnell, M.D., Candarlioglu, P.L., Miller, C.A., Gentleman, E., Stevens, M.M.: Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration. J. Mater. Chem. 20, 8934–8941 (2010)

    Article  Google Scholar 

  21. Bonino, F., Damin, A., Miola, M., Vernè, E., Bretcanu, O., Bordiga, S., Zecchina, A., Morterra, C.: In situ Raman study to monitor bioactive glasses reactivity. J. Raman Spectrosc. 39(2), 260–264 (2008)

    Article  CAS  Google Scholar 

  22. Bellucci, D., Sola, A., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V.: Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater. Sci. Eng. C. 51, 196–205 (2015)

    Article  CAS  Google Scholar 

  23. Chajri, S., Bouhazma, S., Herradi, S., Barkai, H., Elabed, S., Ibnsouda, Koraichi, S., El Bali, B., Lachkar, M.: Studies on preparation and characterization of SiO2-CaO-P2O5 and SiO2-CaO-P2O5-Na2O bioglasses substituted with ZnO. J Mater Environ Sci. 6(Y), 1882–1897 (2015)

    Google Scholar 

  24. Arepalli, S.K., Tripathi, H., Vyas, V.K., Jain, S., Suman, S.K., Pyare, R., Singh, S.P.: Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater. Sci. Eng. C. 49, 549–559 (2015)

    Article  CAS  Google Scholar 

  25. Hoppe, A., Sarker, B., Detscha, R., Hild, N., Mohn, D., Stark, W.J., Boccaccini, A.R.: In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles. J. Non-Cryst. Solids. 387, 41–46 (2014)

    Article  CAS  Google Scholar 

  26. Notingher, I., Jones, J.R., Verrier, S., Bisson, I., Embanga, P., Edwards, P., Polak, J.M., Hench, L.L.: Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectroscopy. 17, 275–288 (2003)

    Article  CAS  Google Scholar 

  27. Ibrahim, N.F., Mohamad, H., Noor, S.N.F.M.: Characterization on melt-derived bioactive glass powder from SiO2-CaO-Na2O-P2O5 system. J. Non-Cryst. Solids. 462, 23–31 (2017)

    Article  CAS  Google Scholar 

  28. Shelby, J.E.: Introduction to Glass Science and Technology. The Royal Society of Chemistry, Cambridge (2005)

    Google Scholar 

  29. Cannillo, V., Pierli, F., Ronchetti, I., Siligardi, C., Zaffe, D.: Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids. Ceram. Int. 35, 2853–2869 (2009)

    Article  CAS  Google Scholar 

  30. Kim, H.-M., Miyaji, F., Kokubo, T.: Bioactivity of Na2O-CaO-SiO2 glasses. J. Am. Ceram. Soc. 78(9), 2405–2411 (1995)

    Article  CAS  Google Scholar 

  31. Cerruti, M., Greenspan, D., Powers, K.: Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials. 26, 1665–1674 (2005)

    Article  CAS  Google Scholar 

  32. Hesaraki, S., Gholami, M., Vazehrad, S., Shahrabi, S.: The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater. Sci. Eng. C. 30, 383–390 (2010)

    Article  CAS  Google Scholar 

  33. El Batal, F.H., El-Bassyouni, G.T.: Bioactivity of Hench bioglass and corresponding glass-ceramic and the effect of transition metal oxides. Silicon. 3, 185–197 (2011)

    Article  Google Scholar 

  34. Marzouk, M.A., ElBatal, H.A.: In vitro bioactivity of soda lime borate glasses with substituted SrO in sodium phosphate solution. Process. Appl. Ceramics. 8(3), 167–177 (2014)

    Article  Google Scholar 

  35. Arepalli, S.K., Tripathi, H., Hira, S.K., Manna, P.P., Pyare, R., Singh, S.P.: Enhanced bioactivity, biocompatibility and mechanical behavior of strontium substituted bioactive glasses. Mater. Sci. Eng. C. 69, 108–116 (2016)

    Article  CAS  Google Scholar 

  36. Cabanas-Polo, S., Boccaccini, A.R.: Understanding bioactive glass powder suspensions for electrophoretic deposition of bioactive glass-polymer coatings. J. Electrochem. Soc. 162(11), D3077–D3083 (2015)

    Article  CAS  Google Scholar 

  37. Fiume, E., Barberi, J., Verné, E., Baino, F.: Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. 9(24), 1–33 (2018)

    Google Scholar 

  38. Sola, A., Bellucci, D., Cannillo, V., Cattini, A.: Bioactive glass coatings: a review. Surf. Eng. 27(8), 560–572 (2011)

    Article  CAS  Google Scholar 

  39. Fredholm, Y.C., Karpukhina, N., Brauer, D.S., Jones, J.R., Law, R.V., Hill, R.G.: Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J. R. Soc. Interface. 9, 880–889 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the Department of Ceramic Technology, Government College of Engineering and Ceramic Technology, Kolkata, India, for providing necessary facilities for the present research work.

Funding

This study was financially supported by the University Grants Commission (UGC) of Minor Research Project (File No. F.PSW-269/15-16 (ERO) DT19.01.2017). One of the authors (Ram Karan) would like to thank University Grants Commission (UGC) New Delhi, India, for financial support of Research Fellowship (UGC-RGNF, F1-17.1/2014-15/RGNF-2014-15-SC-RAJ-61456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Karan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karan, R., Manna, P., Maiti, P.K. et al. Influence of selenium dioxide (SeO2) on properties of bioglass in SiO2-Na2O-CaO-P2O5 system. J Aust Ceram Soc 56, 1135–1145 (2020). https://doi.org/10.1007/s41779-020-00459-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00459-z

Keywords

Navigation