Skip to main content

Determination of the optimum amount of iodine in electrophoretic deposition of hydroxyapatite (HA) nanoparticles

Abstract

In this research, the hydroxyapatite (HA) nanoparticles were deposited on sandblasted titanium by electrophoretic deposition method. In this case, isopropanol-acetone suspension with 50/50 ratio was used by using iodine as a dispersant. The suspensions were prepared with various concentrations of iodine (0, 0.2, 0.4, 0.6, and 0.8 g/L). Furthermore, the pH of suspension, the electrical conductivity of the suspension mediums, and the zeta potential, mobility, and particle size distribution of HA nanoparticles were measured in suspensions. In the next step, the optimum content of iodine was determined to provide a sustainable suspension. Then, HA coating was deposited on sandblasted titanium surface. The current density during electrophoretic deposition (EPD) and deposition rate in different voltages were investigated. The microstructure and morphology of the sediments were examined by using FE-SEM and AFM. Finally, the structure and phase composition of the coatings were analyzed by using XRD before and after sintering. Furthermore, the adhesion strength of the coating to the substrate was measured. The results show that 0.6-g/L iodine prepared a stable suspension and the effect of current density and potential on the deposition weight is determined. In additional, the results show a finer and narrower particle size distribution can be observed. Also, adhesion strength of the coatings to the sandblasted titanium surface is about 11 MPa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Vamsi Krishna, B., Xue, W., Bose, S., Bandyopadhyay, A.: Engineered porous metals for implants. J. Miner. Met. Mater. Soc. 60, 45–48 (2008)

    Article  Google Scholar 

  2. Sidebotham, C.G.: Load bearing implants. ed: Google Patents, (2014)

  3. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    CAS  Article  Google Scholar 

  4. Rey, C.: Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials. 11, 13 (1990)

    CAS  Article  Google Scholar 

  5. Palmer, L.C., Newcomb, C.J., Kaltz, S.R., Spoerke, E.D., Stupp, S.I.: Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev. 108, 4754 (2008)

    CAS  Article  Google Scholar 

  6. Bose, S., Saha, S.K.: Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem. Mater. 15, 4464–4469 (2003)

    CAS  Article  Google Scholar 

  7. Banerjee, A., Bandyopadhyay, A., Bose, S.: Hydroxyapatite nanopowders: synthesis, densification and cell–materials interaction. Mater. Sci. Eng. C. 27, 729–735 (2007)

    CAS  Article  Google Scholar 

  8. Narayanan, R., Seshadri, S., Kwon, T., Kim, K.: Calcium phosphate-based coatings on titanium and its alloys. J. Biomed. Mater. Res. B Appl. Biomater. 85, 279–299 (2008)

    CAS  Article  Google Scholar 

  9. Cheang, P., Khor, K.: Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomat. 17, 537–544 (1996)

    CAS  Article  Google Scholar 

  10. Tsui, Y., Doyle, C., Clyne, T.: Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials. 19, 2015–2029 (1998)

    CAS  Article  Google Scholar 

  11. Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res. A. 58, 570–592 (2001)

    CAS  Article  Google Scholar 

  12. Capuccini, C., Torricelli, P., Sima, F., Boanini, E., Ristoscu, C., Bracci, B.: Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. Acta Biomater. 4, 1885–1893 (2008)

    CAS  Article  Google Scholar 

  13. Bao, Q., Chen, C., Wang, D., Ji, Q., Lei, T.: Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl. Surf. Sci. 252, 1538–1544 (2005)

    CAS  Article  Google Scholar 

  14. Cui, F., Luo, Z., Feng, Q.: Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J. Mater. Sci. Mater. Med. 8, 403–405 (1997)

    CAS  Article  Google Scholar 

  15. Herø, H., Wie, H., Jørgensen, R.B., Ruyter, I.: Hydroxyapatite coatings on Ti produced by hot isostatic pressing. J. Biomed. Mater. Res. A. 28, 343–348 (1994)

    Article  Google Scholar 

  16. Habibovic, P., Barrere, F., Blitterswijk, C.A., Groot, K., Layrolle, P.: Biomimetic hydroxyapatite coating on metal implants. J. Am. Ceram. Soc. 85, 517–522 (2002)

    CAS  Article  Google Scholar 

  17. Lacefield, W.: Hydroxyapatite coatings. Ann. N. Y. Acad. Sci. 523, 72–80 (1988)

    CAS  Article  Google Scholar 

  18. Liu, D.M., Yang, Q., Troczynski, T.: Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials. 23, 691–698 (2002)

    CAS  Article  Google Scholar 

  19. Surmenev, R.A.: A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf. Coat. Technol. 206, 2035–2056 (2012)

    CAS  Article  Google Scholar 

  20. Wang, Z., Shemilt, J., Xiao, P.: Novel fabrication technique for the production of ceramic/ceramic and metal/ceramic composite coatings. Scr. Mater. 42, 653–659 (2000)

    CAS  Article  Google Scholar 

  21. Wei, M., Ruys, A., Milthorpe, B., Sorrell, C., Evans, J.: Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach. J. Sol-Gel Sci. Technol. 21, 39–48 (2001)

    CAS  Article  Google Scholar 

  22. Wang, Z., Shemilt, J., Xiao, P.: Fabrication of ceramic composite coatings using electrophoretic deposition, reaction bonding and low temperature sintering. J. Eur. Ceram. Soc. 22, 183–189 (2002)

    Article  Google Scholar 

  23. Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996)

    CAS  Article  Google Scholar 

  24. Seike, T., Matsuda, M., Miyake, M.: Fabrication of Y-type zeolite films by electrophoretic deposition. Solid State Ionics. 151, 123–127 (2002)

    CAS  Article  Google Scholar 

  25. Uchikoshi, T., Suzuki, T.S., Okuyama, H., Sakka, Y., Nicholson, P.S.: Electrophoretic deposition of alumina suspension in a strong magnetic field. J. Eur. Ceram. Soc. 24, 225–229 (2004)

    CAS  Article  Google Scholar 

  26. Farrokhi Rad, M., Ghorbani, M.: Electrophoretic deposition of titania nanoparticles in different alcohols: kinetics of deposition. J. Am. Ceram. Soc. 94, 2354–2361 (2011)

    CAS  Article  Google Scholar 

  27. Farrokhi Rad, M., Shahrabi, T.: Electrophoretic deposition of titania nanoparticles: sticking parameter determination by an in situ study of the EPD kinetics. J. Am. Ceram. Soc. 95, 3434–3440 (2012)

    CAS  Article  Google Scholar 

  28. Xiao, X.F., Liu, R.F.: Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings. Mater. Lett. 60, 2627–2632 (2006)

    CAS  Article  Google Scholar 

  29. Farrokhi Rad, M., Shahrabi, T.: Effect of triethanolamine on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7007–7013 (2013)

    CAS  Article  Google Scholar 

  30. Loghmani, S.K., Farrokhi, R.M., Shahrabi, T.: Effect of polyethylene glycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol. Ceram. Int. 39, 7043–7051 (2013)

    Article  Google Scholar 

  31. Monmaturapoj, N.: Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route. J. Miner. Met. Mater. Soc. 18, 15–20 (2008)

    CAS  Google Scholar 

  32. Askari, N., Yousefpour, M., Rajabi, M.: Determination of optimum Al content in HA-Al2O3 nanocomposites coatings prepared by electrophoretic deposition on titanium substrate. Int. J. Appl. Ceram. Technol., 970–979 (2018)

  33. Karimi, E., Khalil Allafi, J., Khalili, V.: Electrophoretic deposition of double-layer HA/Al composite coating on NiTi. Mater. Sci. Eng. C. 58, 882–890 (2016)

    CAS  Article  Google Scholar 

  34. Ferrari, B., Moreno, R.: The conductivity of aqueous Al 2 O 3 slips for electrophoretic deposition. Mater. Lett. 28, 353–355 (1996)

    CAS  Article  Google Scholar 

  35. Ansel, C., Allen, L.V., Popovich, N.G. Eighth edition “disperse systems” Pharmaceutical Dosage Forms & Drug Delivery Systems, Lippincott Williams and Wilkins, Philadelphia, 398, 387–389 (2005)

  36. Martin, A.: Fourth Edition, “Coarse Dispersion” Physical Pharmacy, pp. 479–481. Lippincott Williams and Wilkins, Philadelphia (2001)

    Google Scholar 

  37. Remington, R.: Twentieth Edition, “Colloidal Dispersions” the Science and Practice of Pharmacy, Lippincott Williams and Wilkins, Philadelphia, 298–307 (2000)

  38. Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 1–61 (2007)

    CAS  Article  Google Scholar 

  39. Yousefpour, M., Afshar, A., Chen, J., Zhang, X.: Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates. Mater. Sci. Eng. C. 27, 1482–1486 (2007)

    CAS  Article  Google Scholar 

  40. Damodaran, R., Moudgil, B.: Electrophoretic deposition of calcium phosphates from non-aqueous media. Colloids Surf. A Physicochem. Eng. Asp. 80, 191–195 (1993)

    CAS  Article  Google Scholar 

  41. Askari, N., Yousefpour, M., Rajabi, M.: Electrochemical and biological characterization HA/Al2O3-YSZ nano-composite coatings using electrophoretic process. J. Biomed. Mater. Res. Part A. 106, 1916–1922 (2018)

    CAS  Article  Google Scholar 

  42. Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of nanobiocomposites for orthopedic applications: influence of contained water in suspension. Prot. Met. Phys. Chem. Surf. 55, 302–309 (2019)

    CAS  Article  Google Scholar 

  43. Molaei, A., Yousefpour, M.A.: Preparation of chitosan-based nanocomposites and biomedical investigations in bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 68, 701–713 (2019)

    CAS  Article  Google Scholar 

  44. Molaei, A., Yousefpour, M.A.: Electrophoretic deposition of chitosan–bioglass–hydroxyapatite halloysite nanotube composite coating. Rare Metals. (2018). https://doi.org/10.1007/s12598-018-1021-2

Download references

Funding

The authors would like to thank the Semnan University for the financial support provided for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardali Yousefpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Askari, N., Yousefpour, M. & Rajabi, M. Determination of the optimum amount of iodine in electrophoretic deposition of hydroxyapatite (HA) nanoparticles. J Aust Ceram Soc 56, 1053–1059 (2020). https://doi.org/10.1007/s41779-020-00450-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00450-8

Keywords

  • Electrophoretic deposition
  • Hydroxyapatite
  • Nanoparticle
  • Suspension medium