Studies on dielectric and magnetic properties of CaCu3Ti3MnO12 ceramic synthesized via semi-wet route


CaCu3Ti3MnO12 (CCTMO) ceramic has been successfully synthesized by the semi-wet route and sintered at 1223 K for 8 h, which is confirmed by XRD analysis to ensure CaCu3Ti3MnO12 (CCTMO) phase formation. The microstructure, phase-structure, and thermal behavior were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. After Mn-doping, the dielectric constant decreases from 104 to 102. The particle size as well as grain size measured by TEM and SEM techniques which were found to be 43.76 ± 10 nm and 1.46 μm, respectively. The route mean square and average roughness observed by atomic force microscope (AFM) analysis were 0.141 μm and 0.109 μm, respectively. The temperature-dependent ferromagnetic nature of CCTMO ceramic was confirmed by zero field cooled (ZFC), field cooled (FC), and M-H hysteresis curves. The investigated magnetic property of CCTMO confirmed paramagnetic behavior at 300 K and ferromagnetic behavior at 5 K. The dielectric constant (ɛr) increases when temperature increases, although dielectric constant and dielectric loss were observed 100 and 0.1, respectively.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Bochu, B., Deschizeaux, M.N., Joubert, J.C., Collomb, A., Chenavas, J., Marezio, M.: Synthèse et caractérisation d'une série de titanates perovskites isotypes de [CaCu3](Mn4) O12. J. Solid State Chem. 29(2), 291–298 (1979)

    CAS  Article  Google Scholar 

  2. 2.

    Windlass, H., Raj, P.M., Balaraman, D., Bhattacharya, S.K., Tummala, R.R.: Colloidal processing of polymer ceramic nanocomposite integral capacitors. IEEE Trans. Adv. Packag. 26, 100–105 (2003)

    CAS  Article  Google Scholar 

  3. 3.

    Li, J., Subramanian, M.A., Rosenfeld, H.D., Jones, C.Y., Toby, B.H., Sleight, A.W.: Clues to the giant dielectric constant of CaCu3Ti4O12 in the defect structure of SrCu3Ti4O12. Chem. Mater. 16(25), 5223–5225 (2004)

    CAS  Article  Google Scholar 

  4. 4.

    Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., Shapiro, S.M.: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115(5), 217–220 (2000)

    CAS  Article  Google Scholar 

  5. 5.

    Huang, Y., Shi, D., Li, Y., Li, G., Wang, Q., Liu, L., Fang, L.: Effect of holding time on the dielectric properties and non-ohmic behaviour of CaCu3 Ti4O12 capacitor-varistors. J. Mater. Sci. Mater. Electron. 24(6), 1994–1999 (2013)

    CAS  Article  Google Scholar 

  6. 6.

    Ouyang, X., Habib, M., Cao, P., Wei, S., Huang, Z., Zhang, W., Gao, W.: Enhanced extrinsic dielectric response of TiO2 modified CaCu3Ti4O12ceramics. Ceram. Int. 41(10), 13447–13454 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Shay, D.P., Podraza, N.J., Donnelly, N.J., Randall, C.A.: High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95(4), 1348–1355 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    West, D.L., Payne, D.A.: Microstructure Development in Reactive-Templated Grain Growth of Bi1/2Na1/2TiO3-Based Ceramics: Template and Formulation Effects. J. Am. Ceram. Soc. 86(5), 769–774 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    Adams, T.B., Sinclair, D.C., West, A.R.: Characterization of grain boundary impedances in fine-and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B. 73(9), 094124 (2006)

    Article  Google Scholar 

  10. 10.

    Subramanian, M.A., Li, D., Duan, N., Reisner, B.A., Sleight, A.W.: High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151(2), 323–325 (2000)

    CAS  Article  Google Scholar 

  11. 11.

    Singh, L., Sin, B.C., Kim, I.W., Mandal, K.D., Chung, H., Lee, Y.A.: A novel one-step flame synthesis method for tungsten-doped CCTO. J. Am. Ceram. Soc. 99(1), 27–34 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    Li, M., Feteira, A., Sinclair, D.C., West, A.R.: Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88(23), 232903 (2000)

    Article  Google Scholar 

  13. 13.

    Sinclair, D.C., Adams, T.B., Morrison, F.D., West, A.R.: CaCu3Ti4O12 one-step internal barrier layer capacitor. Appl. Phys. Lett. 80(12), 2153–2155 (2000)

    Article  Google Scholar 

  14. 14.

    Li, W., Schwartz, R.W.: ac conductivity relaxation processes in CaCu3Ti4O12 ceramics: Grain boundary and domain boundary effects. Appl. Phys. Lett. 89(24), 242906 (2006)

    Article  Google Scholar 

  15. 15.

    Wu, L., Zhu, Y., Par, S., Shapiro, S., Shirane, G., Tafto, J.: Defect structure of the high-dielectric-constant perovskite CaCu3Ti4O12. Phys. Rev. B. 71(1), 014118 (2005)

    Article  Google Scholar 

  16. 16.

    Xu, D., He, K., Yu, R., Sun, X., Yang, Y., Xu, H., Yuan, H., Ma, J.: High dielectric permittivity and low dielectric loss in sol-gel derived Zn doped CaCu3Ti4O12 thin films. Mater. Chem. Phys. 153, 229–235 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Cho, A., Han, C.S., Kang, M., Choi, W., Lee, J., Jeon, J., Yu, S., Jung, Y.S., Cho, Y.S.: Direct Correlations of Grain-Boundary Potentials to Chemical States and Dielectric Properties of Doped CaCu3Ti4O12 Thin Films. ACS Appl. Mater. Interfaces. 10(18), 16203–16209 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    Chung, S.Y., Kim, I.D., Kang, S.J.: Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3(11), 774 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    Fang, T.T., Shiau, H.K.: Mechanism for developing the boundary barrier layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 87(11), 2072–2079 (2004)

    CAS  Article  Google Scholar 

  20. 20.

    Kim, C.H., Jang, Y.H., Seo, S.J., Song, C.H., Son, J.Y., Yang, Y.S., Cho, J.H.: Effect of Mn doping on the temperature-dependent anomalous giant dielectric behaviour of CaCu3Ti4O12. Phys. Rev. B. 85(24), 245210 (2012)

    Article  Google Scholar 

  21. 21.

    Thongbai, P., Pinitsoontorn, S., Amornkitbamrung, V., Yamwong, T., Maensiri, S., Chindaprasirt, P.: Reducing loss tangent by controlling microstructure and electrical responses in CaCu3Ti4O12 ceramics prepared by a simple combustion method. Int. J. Appl. Ceram. Technol. 10, E77–E87 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    Lin, Y.H., Cai, J., Li, M., Nan, C.W., He, J.: High dielectric and nonlinear electrical behaviors in TiO2 -rich Ca Cu3Ti4O12 ceramics. Appl. Phys. Lett. 88(17), 172902 (2006)

    Article  Google Scholar 

  23. 23.

    Khare, A., Yadava, S.S., Mandal, K.D., Mukhopadhyay, N.K.: Effect of sintering duration on the dielectric properties of 0.9 BaTiO3–0.1 CaCu3Ti4O12 nanocomposite synthesized by solid state route. Microelectron. Eng. 164, 1–6 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    Kim, H.E., Choi, S.M., Hong, Y.W.: Improved dielectric properties of the CaCu3Ti4O12 composites using BaTiO3-coated powder as precursor. J. Alloys Compd. 610, 594–599 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Gautam, P., Khare, A., Sharma, S., Singh, N.B., Mandal, K.D.: Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route. Pro. Nat. Sci-Mater. 26(6), 567–571 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    Wu, X., Huang, K., Yuan, L., Feng, S.: Fabrication of ultralong perovskite structure nanotubes. RSC Adv. 8(1), 367–373 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    George, M., Nair, S.S., Malini, K.A., Joy, P.A., Anantharaman, M.R.: Finite size effects on the electrical properties of sol–gel synthesized CoFe2O4 powders: deviation from Maxwell–Wagner theory and evidence of surface polarization effects. J. Phys. D. Appl. Phys. 40(6), 1593 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    Jia, R., Zhao, X., Li, J., Tang, X.: Colossal breakdown electric field and dielectric response of Al-doped CaCu3Ti4O12 ceramics. Mater. Sci. Eng. B. 185, 79–85 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Sun, D.L., Wu, A.Y., Yin, S.T.: Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel process. J. Am. Ceram. Soc. 91(1), 169–173 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    Mo, Z.J., Shen, J., Gao, X.Q., Liu, Y., Wu, J.F., Shen, B.G., Sun, J.R.: Magnetic properties and magnetocaloric effects in HoPd intermetallic. Chinese. Phys B. 24(3), 037503 (2015)

    Article  Google Scholar 

  31. 31.

    Han, D., Wu, Z., Wang, Z., Yang, S.: Oriented Mn-doped CuO nanowire arrays. Nanotechnology. 27(13), 135603 (2012)

    Article  Google Scholar 

  32. 32.

    Yadava, S.S., Singh, L., Sharma, S., Mandal, K.D., Singh, N.B.: Effect of temperature on the dielectric and ferroelectric properties of a nanocrystalline hexagonal Ba4YMn 3O11.5− δ ceramic synthesized by a chemical route. RSC Adv. 6(72), 68247–68253 (2016)

    CAS  Article  Google Scholar 

Download references


The author would like to thank in-charge of central instrument facility centre (CIFC), IIT (BHU) Varanasi for SEM, TEM, AFM, and MPMS facilities.


One of the authors Santosh Pandey received financial support for teaching assistantship from IIT (BHU).

Author information



Corresponding author

Correspondence to K. D. Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Kumar, A., Singh, N.B. et al. Studies on dielectric and magnetic properties of CaCu3Ti3MnO12 ceramic synthesized via semi-wet route. J Aust Ceram Soc 56, 915–922 (2020).

Download citation


  • Semi-wet route
  • Dielectric properties
  • Magnetic properties