Sintering and mechanical properties of magnesium containing hydroxyfluorapatite

Abstract

Magnesium substituted hydroxyfluorapatites with the general formula Ca10-xMgx (PO4)6F(OH) with (0 ≤ x ≤ 2.5) were synthesized by the hydrothermal method. The apatite phases were sintered between 1050 and 1150 °C. The substitution of Ca2+ for Mg2+had a strong influence on the densification behavior and mechanical properties of the materials. The density increased simultaneously with the increase of Mg2+content up to x = 1 and then decreased beyond this value. The X-ray diffraction study indicated that the Mg introduced into the solutions was incorporated into the hydroxyfluorapatite. Mechanical properties: Vickers hardness Hv, Young’s modulus E, and shear modulus G were investigated in correlation with the modification of micro-structural characteristics of the sintered materials. According to the obtained properties, these materials possessed sufficient characteristics to be a promising candidate for bone replacement applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Abbreviations

HA:

Hydroxyapatite

HFA:

Hydroxyfluorapatite

MHA:

Magnesium doped hydroxyapatite

MHFA:

Magnesium doped hydroxyfluorapatite

References

  1. 1.

    Marra, K.G., Szem, J.W., Kumta, P.N., DiMilla, P.A., Weiss, L.E.: In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. Biomed. Mater. Res. 47, 324–335 (1999)

    CAS  Google Scholar 

  2. 2.

    Kolmas, J., Krukowski, S., Laskus, A., Jurkitewicz, M.: Synthetic hydroxyapatite in pharmaceutical applications. Ceram. Int. 42, 2472–2487 (2016)

    CAS  Google Scholar 

  3. 3.

    Szcześ, A., Hołysz, L., Chibowski, E.: Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interf. Sci. 249, 321–330 (2017)

    Google Scholar 

  4. 4.

    Pathi, S.P., Lin, D.D., Dorvee, J.R., Estroff, L.A., Fischbach, C.: Hydroxyapatite nanoparticle-containing scaffolds for the study of breast cancer bone metastasis. Biomater. 32, 5112–5122 (2011)

    CAS  Google Scholar 

  5. 5.

    Kim, S.S., Park, M.S., Jeon, O., Choi, C.Y., Kim, B.S.: Poly (lactide-coglycolide)/ hydroxyapatite composite scaffolds for bone tissue engineering. Biomater. 27, 1399–1409 (2006)

    CAS  Google Scholar 

  6. 6.

    Miyaji, F., Kono, Y., Suyama, Y.: Formation and structure of zinc-substituted calcium hydroxyapatite. Mater. Res. Bull. 40, 209–220 (2005)

    CAS  Google Scholar 

  7. 7.

    Ergun, C., Webster, T.J., Bizios, R., Doremus, R.H.: Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure. Biomed. Mater. Res. 59, 305–311 (2001)

    Google Scholar 

  8. 8.

    Roy, M., Fielding, G.A., Bandyopadhyay, A., Bose, S.: Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption. Biomater. Sci. 1, 74–82 (2013)

    CAS  Google Scholar 

  9. 9.

    Sundfeldt, M., Widmark, M., Wenerberg, A., Karrholm, J., Johansson, C.B., Carlsson, L.V.: Does sodium fluoride in bone cement affect implant fixation? Part I: Bone tissue response, implant fixation and histology in nine rabbits. Mater. Sci: Mater. Med. 13, 1037–1043 (2002)

    CAS  Google Scholar 

  10. 10.

    Qu, H., Wei, M.: The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater. 2, 113–119 (2006)

    Google Scholar 

  11. 11.

    Wang, Y., Zhang, S., Zeng, X., Cheng, K., Qian, M., Weng, W.: In vitro behavior of fluoridated hydroxyapatite coatings in organic-containing simulated body fluid. Mater. Sci. Eng. C. 27, 244–250 (2007)

    Google Scholar 

  12. 12.

    Bhadang, K.A., Holding, C.A., Thissen, H., Mc-Lean, K.M., Forsythe, J.S., Haynes, D.R.: Biological responses of human osteoblasts and osteoclasts to flame-sprayed coatings of hydroxyapatite and fluorapatite blends. Acta Biomater. 6, 1575–1583 (2010)

    CAS  Google Scholar 

  13. 13.

    Yoon, B.H., Kim, H.W., Lee, S.H., Bae, C.J., Koh, Y.H., Kong, Y.M.: Stability and cellular responses to fluorapatite–collagen composites. Biomater. 26, 2957–2963 (2005)

    CAS  Google Scholar 

  14. 14.

    Zhang, W.G., Wang, L.Z., Liu, Z.: The influence of fluoride on the development of the osteoblast phenotype in rat calvarial osteoblasts: an in vitro study. Shan. K. Qi.Y. X. 7, 88–93 (1998)

    CAS  Google Scholar 

  15. 15.

    Kim, H.W., Lee, E.J., Kim, H.E., Salih, V., Knowles, J.C.: Effect of fluoridation of hydroxyapatite in hydroxyapatite–polycaprolactone composites on osteoblast activity. Biomater. 26, 4395–4404 (2005)

    CAS  Google Scholar 

  16. 16.

    Inoue, M., Nagatsuka, H., Tsujigiwa, H., Inoue, M., LeGeros, R.Z., Yamamoto, T.: In vivo effect of fluoride-substituted apatite on rat bone. Dent. Mater. 24, 398–402 (2005)

    Google Scholar 

  17. 17.

    Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H.V., Correia, R.N.: The fluorapatite–anorthite system in biomedicine. Biomater. 24, 1317–1331 (2003)

    CAS  Google Scholar 

  18. 18.

    Tredwin, C.J., Young, A.M., Abou Neel, E.A., Georgiou, G., Knowles, J.C.: Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallization. Mater. Sci.: Mater. Med. 25, 47–53 (2014)

    CAS  Google Scholar 

  19. 19.

    LeGeros, R.Z.: Calcium phosphates in oral biology and medicine. New York University College of Dentistry, New York (1991)

    Google Scholar 

  20. 20.

    Abdallaha, M.N., Eimar, H., Bassett, D.C., Schnabel, M., Ciobanu, O., Nelea, V., McKee, M.D., Cerruti, M., Tamimi, F.: Diagenesis-inspired reaction of magnesium ions with surface enamel mineral modifies properties of human teeth. Acta Biomater. 37, 174–183 (2016)

    Google Scholar 

  21. 21.

    Saris, N.E., Mervaala, E., Karppanen, H., Khawaja, J.A., Lewenstam, A.: Magnesium. An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 294, 1–26 (2000)

    CAS  Google Scholar 

  22. 22.

    Kraus, T., Fischerauer, S.F., Hänzi, A.C., Uggowitzer, P.J., Löffler, J.F., Weinberg, A.M.: Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomater. 8, 1230–1238 (2012)

    CAS  Google Scholar 

  23. 23.

    Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomater. 27, 1728–1734 (2006)

    CAS  Google Scholar 

  24. 24.

    Hidouri, M., Bouzouita, K., Kooli, F., Khattech, I.: Thermal behaviour of magnesium-containing fluorapatite. Mater. Chem. Phys. 80, 496–505 (2003)

    CAS  Google Scholar 

  25. 25.

    Grigolato, R., Pizzi, N., Brotto, M.C., Corrocher, G., Desando, G., Grigolo, B.: Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect. Int. Clin. Exp. Med. 8, 281–288 (2015)

    CAS  Google Scholar 

  26. 26.

    Landi, E., Logroscino, G.E., Proietti, L., Tampieri, A., Sandri, M., Sprio, S.: Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. Mater. Sci: Mater. Med. 19, 239–247 (2008)

    CAS  Google Scholar 

  27. 27.

    Ben Abdelkader, S., Khattech, I., Rey, C., Jemal, M.: Synthese, caracterisation et thermochimie d’apatites calco-magnesiennes hydroxylées et fluorées. Therm. Acta. 376, 25–36 (2001)

    CAS  Google Scholar 

  28. 28.

    Suchanek, W.L., Byrappa, K., Shuk, P., Riman, R.E., Janas, V.F., TenHuisen, K.S.: Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical–hydrothermal method. Biomater. 25, 4647–4657 (2004)

    CAS  Google Scholar 

  29. 29.

    Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)

    Google Scholar 

  30. 30.

    Gayathri, B., Muthukumarasamy, N., Velauthapillai, D., Santhosh, S.B., Asokan, V.: Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity. Arab. Chem. 11, 645–654 (2018)

    Google Scholar 

  31. 31.

    Big, A., Faliai, G., Foresti, E., Gazzano, M., Ripamon, A., Roveri, N.: Magnesium influence on hydroxyapatite crystallization. Inor. Biochem. 49, 69–78 (1993)

    Google Scholar 

  32. 32.

    Bertoni, E., Bigi, A., Cojazzi, G., Gandol, M., Panzavolta, S., Roveri, N.: Nanocrystals of magnesium and fluoride substituted hydroxyapatite. Inorg. Biochem. 72, 29–35 (1998)

    CAS  Google Scholar 

  33. 33.

    Mayer, I., Scblam, R., Featberstone, J.D.B.: Magnesium-containing carbonate apatites. Inorg. Biochem. 66, 1–6 (1997)

    CAS  Google Scholar 

  34. 34.

    Fowler, B.O.: Infrared Studies of Apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 13, 194–207 (1974)

    CAS  Google Scholar 

  35. 35.

    Harrison, J., Melville, A.J., Forsythe, J.S., Muddle, B.C., Trounson, A.O., Gross, K.A., Mollard, R.: Sintered hydroxyfluorapatites—IV: the effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells. Biomater. 25, 4977–4986 (2004)

    CAS  Google Scholar 

  36. 36.

    Rodriguez-Lorenzo, L.M., Hart, J.N., Gross, K.A.: Influence of fluorine in the synthesis of apatites. Synthesis of solid solutions of hydroxy-fluorapatite. Biomater. 24, 3777–13785 (2003)

    CAS  Google Scholar 

  37. 37.

    Jha, L.J., Best, S.M., Knowles, J.C., Rehman, I., Santos, J.D., Bonfield, W.: Preparation and characteri zation of fluoride-substituted apatites. Mater. Sci: Mater. Med. 8, 185–191 (1997)

    CAS  Google Scholar 

  38. 38.

    Rodriguez-Lorenzo, L.M., Hart, J.N., Gross, K.A.: Structural and chemical analysis of well-crystallized hydroxyfluorapatites. Phys. Chem. B. 107, 8316–8320 (2003)

    CAS  Google Scholar 

  39. 39.

    Fathi, M.H., Zahrani, E.M.: Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite. Cryst. Gro. 311, 1392–1403 (2009)

    CAS  Google Scholar 

  40. 40.

    Nasr, S., Ben Salem, E., Bouzouita, K.: Effect of fluorine on the thermal stability of the magnesium-substituted hydroxyapatite. Ann. Chim. Sci. Mater. 36, 159–176 (2011)

    CAS  Google Scholar 

  41. 41.

    Iqbal, K.N., Ijaz, K., Zahid, M., Khan, A.S., Abdul Kadir, M.R., Hussain, R., A.-ur-Rehman, Jawwad, A.D., I-ur-Rehman, Chaudhry Aqif, A.: Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics. Mater. Sci. Eng. C. 56, 286–293 (2015)

    Google Scholar 

  42. 42.

    Fadeev, I.V., Shvorneva, L.I., Barinov, S.M., Orlovskii, V.P.: Synthesis and structure of magnesium-substituted hydroxyapatite. Inorg. Mater. 39, 947–950 (2003)

    CAS  Google Scholar 

  43. 43.

    Baravelli, S., Bigi, A., Ripamonti, A., Roveri, N.: Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium. Inorg. Biochem. 20, 1–12 (1984)

    CAS  Google Scholar 

  44. 44.

    Qi, G., Zhang, S., Khor, K.A., Liu, C., Zeng, X., Weng, W., Qian, M.: In vitro effect of magnesium inclusion in sol–gel derived, apatite. Thin Solid Films. 516, 5176–5180 (2008)

    CAS  Google Scholar 

  45. 45.

    Rice, R.W.: Microstructure dependence of mechanical behavior of ceramics. Treat. on Mater. Sci. Tech. 11, 199–381 (1977)

    CAS  Google Scholar 

  46. 46.

    Furukawat, M., Horita, Z., Nemoto, M., Valiev, R.Z., Langdon, T.G.: Microhardness measurements and the Hall-Petch relationship in an al mg alloy with submicrometer grain size. Acta Mater. 44, 4619–4629 (1996)

    Google Scholar 

  47. 47.

    Thanigai Arul, K., Kolanthai, E., Manikandan, E., Bhalerao, G.M.: Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties. Mater. Res. Bull. 67, 55–62 (2015)

    Google Scholar 

  48. 48.

    Vaßen, R., Stover, D.: Processing and properties of nanophase non-oxide ceramics. Mater. Sci. Eng. 301, 59–68 (2001)

    Google Scholar 

  49. 49.

    Adzila, S., Ramesh, S., Sopyan, I.: Properties of magnesium doped nanocrystalline hydroxyapatite synthesize by mechanochemical method. ARPN. Eng. App. Sci. 11, 14097–14100 (2016)

    CAS  Google Scholar 

  50. 50.

    Ramesh, S., Jeffrey, C.K.L., Tan, C.Y., Wong, Y.H., Ganesan, P., Kutty, M.G., Chandran, H., Devaraj, P.: Sintering behavior and properties of magnesium orthosilicate-hydroxyapatite ceramic. Ceram. Int. 42, 15756–15761 (2016)

    CAS  Google Scholar 

  51. 51.

    Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., Oktar, F.N.: Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng. C. 77, 470–475 (2017)

    CAS  Google Scholar 

  52. 52.

    Bouslama, N., Chevalier, Y., Bouaziz, J., Ben Ayed, F.: Influence of the sintering temperature on Young’s modulus and the shear modulus of tricalcium phosphate fluorapatite composites evaluated by ultrasound techniques. Mater. Chem. Phys. 141, 289–297 (2013)

    CAS  Google Scholar 

  53. 53.

    Franz, E.D., Telle, R.: Reaction hot pressing of fluorapatite for dental implants. Hight. Tech.Ceram. 1, 31–41 (1987)

    Google Scholar 

  54. 54.

    Elliot, J.C.: Structure and Chemistry of the apatite and other calcium orthophosphates. Amesterdam. (1994)

  55. 55.

    Akao, M., Aoki, H., Kato, K.: Mechanical properties of sintered hydroxyapatite for prosthetic applications. Mater. Sci. 16, 809–812 (1981)

    CAS  Google Scholar 

  56. 56.

    Vashishth, D., Tanner, K.E., Bonfield, W.: Fatigue of cortical bone under combined axial-torsional loading. Ortho. Res. 13, 414–420 (2001)

    Google Scholar 

  57. 57.

    Ohman, C., Zwierzak, I., Baleani, M., Viceconti, M.: Human bone hardness seems to depend on tissue type but not on anatomical site in the long bones of an old subject. Eng. Med. 227, 200–206 (2012)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Ammar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ammar, H., Nasr, S., Ageorges, H. et al. Sintering and mechanical properties of magnesium containing hydroxyfluorapatite. J Aust Ceram Soc 56, 931–942 (2020). https://doi.org/10.1007/s41779-019-00422-7

Download citation

Keywords

  • Hydroxyfluorapatite
  • Magnesium
  • Sintering
  • Mechanical properties