Investigation on the habit plane of martensitic transformation in zirconia coatings

Abstract

Martensitic transformation was investigated by the combination of electron backscatter diffraction and in situ atomic force microscope (AFM). The metastable tetragonal phase in the plasma-sprayed 3 mol% Y2O3-ZrO2 coating showed a strong basal texture with the {001}t plane parallel to the surface. The habit plane (108)t of a pair of V-arranged monoclinic variants was determined on the basis of the lattice correspondence of (001)m//(100)t, [100]m//[010]t, and [010]m//[001]t and an included angle of 14°. Additionally, the direction of residual stress in the coatings was revealed by the periodic corrugation patterns of AFM, which matched approximately with 10° deflection of the basal texture. This was further confirmed by an in situ reverse transformation from the monoclinic phase to tetragonal phase and the formation of parallel microcracks after stress release during heat treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Padture, N.P., Gell, M., Jordan, E.H.: Materials science - thermal barrier coatings for gas-turbine engine applications. Nature. 296, 280–284 (2002)

    CAS  Google Scholar 

  2. 2.

    Garvie, R.C., Hannink, R.H., Pascoe, R.T.: Ceramic steel. Nature. 258–703 (1975)

  3. 3.

    Ghaemi, M.H., Reichert, S., Krupa, A., Sawczak, M., Lobach, K., Sayenko, S., Syitlychnyi, Y.: Zirconia ceramics with additions of alumina for advanced tribological and biomedical applications. Ceram. Int. 43, 9746–9752 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    Mahade, S., Curry, N., Bjorklund, S., Markocsan, N., Nylen, P.: Engineered thermal barrier coatings deposited by suspension plasma spray. Mater. Lett. 209, 517–521 (2017)

    CAS  Article  Google Scholar 

  5. 5.

    Kelly, P.M., Rose, L.R.F.: The martensitic transformation in ceramics - its role in transformation toughening. Prog. Mater. Sci. 47, 463–557 (2002)

    CAS  Article  Google Scholar 

  6. 6.

    Mamivand, M., Zaeem, M.A., El Kadiri, H.: Effect of variant strain accommodation on the three-dimensional microstructure formation during martensitic transformation: application to zirconia. Acta Mater. 87, 45–55 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Deville, S., Guenin, G., Chevalier, J.: Martensitic transformation in zirconia Part I. Nanometer scale prediction and measurement of transformation induced relief. Acta Mater. 52, 5697–57077 (2004)

    CAS  Google Scholar 

  8. 8.

    Xu, F., Wen, S.: HREM study of the tetragonal/monoclinic interfacial fine structure in ZrO2 associated with the martensitic transformation. Mater. Lett. 28, 401–407 (1996)

    CAS  Article  Google Scholar 

  9. 9.

    Longhman, M.R., Razavi, R.S., Jamali, H.: Thermal stability and sintering behavior of plasma sprayed nanostructured 7YSZ, 15YSZ and 5.5SYSZ coatings at elevated temperatures. Ceram. Int. 42, 374–383 (2016)

    Google Scholar 

  10. 10.

    Wang, Y., Xu, F., Gauvin, R., Kong, M., Khan, M., Liu, Z., Zeng, Y.: Growth modes for monoclinic yttria-stabilized zirconia during the martensitic transformation. J. Am. Ceram. Soc. 100, 4874–4883 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    Chevalier, J., Gremillard, L.: The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    Bain, E.C.: Nature of martensite. Trans. AIME. 70, 25–46 (1975)

    Google Scholar 

  13. 13.

    Mamivand, M., Zaeem, M.A., El Kadiri, H.: Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Mater. 61, 5223–5235 (2013)

    CAS  Article  Google Scholar 

  14. 14.

    Mamivand, M., Zaeem, M.A., El Kadiri, H.: Phase field modeling of stress-induced tetragonal-to-monoclinic transformation in zirconia and its effect on transformation toughening. Acta Mater. 64, 208–219 (2014)

    CAS  Article  Google Scholar 

  15. 15.

    Kelly, P.M., Bail, C.J.: Crystallography of stress-induced martensitic transformation in partially stabilized zirconia. J. Am. Ceram. Soc. 63, 59–64 (1986)

    Google Scholar 

  16. 16.

    Borik, M.A., Bublik, V.T., Kulebyakin, A.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V.: Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content. J. Alloys Compd. 86, 31–35 (2014)

    Google Scholar 

  17. 17.

    Deville, S., Guenin, G., Chevalier, J.: Atomic force microscopy study and qualitative analysis of martensite relief in zirconia. J. Am. Ceram. Soc. 88, 1261–1267 (2005)

    CAS  Article  Google Scholar 

  18. 18.

    Wright, S.I., Nowell, M.M., Lindeman, S.P.: Introduction and comparison of new EBSD post-processing methodologies. Ultramicroscopy. 159, 81–94 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Deville, S., Guenin, G., Chevalier, J.: Martensitic transformation in zirconia part II. Martensite growth. Acta Mater. 52, 5709–5721 (2004)

    CAS  Google Scholar 

  20. 20.

    Miller, R.A., Smialek, J.L., Garlick, R.G.: Phase stability in plasma-sprayed partially stabilized zirconia-yttria. In: Heuer, A.H., Hobbs, L.W. (eds.) Proceedings of the first international conference on the science and technology of zirconia, pp. 241–253. The American Ceramic Society, Ohio (1981)

    Google Scholar 

  21. 21.

    Wang, Y., Jiajie, H., Ziwei, L.: Melting index characterization and thermal conductivity model of plasma sprayed YSZ coatings. J. Eur. Ceram. Soc. 32, 3701–3707 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    Chen, D., Kuo, J.-c., Wu, W.-T.: Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy. 111, 1488–1494 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    ISO 13067. Microbeam analysis – electron backscatter diffraction – measurement of average grain size (2011).

  24. 24.

    Yamashita, I., Tsukuma, K., Tojo, T., Kawaji, H., Atake, T.: Synchrotron X-ray study of the crystal structure and hydrothermal degradation of yttria-stabilized tetragonal zirconia polycrystal. J. Am. Ceram. Soc. 91, 1634–1639 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    Mccullough, J.D., Trueblood, K.N.: The crystal structure of baddeleyite (monoclinic zro2). Acta Cryst. 12, 507–511 (1959)

    CAS  Article  Google Scholar 

  26. 26.

    Simha, N.K.: Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia. J. Mech. Phys. Solid. 45, 261–292 (1997)

    CAS  Article  Google Scholar 

  27. 27.

    Girardin, G., Huvier, C., Delafosse, D., Feaugas, X.: Correlation between dislocation organization and slip bands: TEM and AFM investigations in hydrogen-containing nickel and nickel-chromium. Acta Mater. 91, 141–151 (2015)

    CAS  Article  Google Scholar 

  28. 28.

    Michael, R.K., Anijela, K.V., Reddy, E.S., Schmitz, G.J.: Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD. J. Adv. Ceram. 3, 317–325 (2014)

    Article  Google Scholar 

  29. 29.

    Ilavsky, J., Stalick, J.K.: Phase composition and its changes during annealing of plasma-sprayed YSZ. Surf. Coat. Technol. 127, 120–129 (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support provided by National Key R&D Program of China (2018YFB0704400), Shanghai Technical Platform for testing on inorganic materials (19DZ2290700), Shanghai Sailing Program (18YF1427000), International Partnership Program of Sciences (GJHZ1721), CAS key foundation for exploring scientific instrument (YJKYYQ20170041), Shanghai foundation for new research methods (17142201500).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2510 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Winhold, M., Kong, M. et al. Investigation on the habit plane of martensitic transformation in zirconia coatings. J Aust Ceram Soc 56, 257–264 (2020). https://doi.org/10.1007/s41779-019-00416-5

Download citation

Keywords

  • Martensitic transformation
  • Yttria-stabilized zirconia
  • Electron backscatter diffraction
  • Atomic force microscopy