First-principles study on Sr-doped hydroxyapatite as a biocompatible filler for photo-cured dental composites

  • Kh. Moradi
  • A. A. Sabbagh AlvaniEmail author


The first-principles calculations based on density functional theory with generalized gradient approximation were carried out to investigate the fundamental features of hydroxyapatite, the primary constituent of human bone and tooth, for use in light-curable dental composites. Moreover, the influence of strontium incorporation into hydroxyapatite on structural, electronic and optical properties of hydroxyapatite was comprehensively studied while we believe this substitution can promote radiopacity and remineralization ability of apatite. After geometry optimization, the computed structural parameters are found to yield a satisfactory agreement with the reported experimental results indicating the accuracy of the calculations. The elastic characteristics demonstrate that both hexagonal apatites possess higher Young’s modulus and Poisson’s ratio compared silica glass which is known as traditional filler used in dental composites. The analysis of the electronic density of states reveals that some variation in macroscopic mechanical properties can arise from difference between d state energy of calcium and strontium elements. Moreover, the origins of optical features affecting the curing depth of composite have been discussed in terms of the dielectric function and refractive index. The weak energy loss in the range of 3–3.5 eV demonstrates that these biocompatible fillers can provide an increased curing depth when are used in a UV-LED cured restorative dental materials.


Hydroxyapatite Biocompatible ceramic Dental composite Elastic properties DFT calculations 



  1. 1.
    Aljabo, A., Neel, E.A.A., Knowles, J.C., Young, A.M.: Development of dental composites with reactive fillers that promote. Mater Sci Eng C. 60, 285–292 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhang, Y., Huang, C., Chang, J.: Ca-doped mesoporous SiO2/dental resin composites with enhanced mechanical properties, bioactivity and antibacterial properties. J Mater Chem B. 6, 477–486 (2018)CrossRefGoogle Scholar
  3. 3.
    Cramer, N.B., Stansbury, J.W., Bowman, C.N.: Recent advances and developments in composite dental restorative materials. J Dent Res. 90, 402–416 (2011)CrossRefGoogle Scholar
  4. 4.
    Habib, E., Wang, R., Wang, Y., Zhu, M., Zhu, X.X.: Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2, 1–11 (2016)CrossRefGoogle Scholar
  5. 5.
    Okada, M., Matsumoto, T.: Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dent Sci Rev. 51, 85–95 (2015)CrossRefGoogle Scholar
  6. 6.
    Grubova, I.Y., Surmeneva, M.A., Huygh, S., Surmenev, R.A., Neyts, E.C.: Density functional theory study of interface interactions in hydroxyapatite/rutile composites for biomedical applications. J Phys Chem C. 121, 15687–15695 (2017)CrossRefGoogle Scholar
  7. 7.
    Faridi-Majidi, R., Nezafati, N., Pazouki, M., Hesaraki, S.: The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J Aust Ceram Soc. 53, 225–233 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, F., Sun, B., Jiang, X., Aldeyab, S.S., Zhang, Q., Zhu, M.: Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dent Mater. 30, 1358–1368 (2014)CrossRefGoogle Scholar
  9. 9.
    Huang, S.B., Gao, S.S., Yu, H.Y.: Effect of nano-hydroxyapatite con-centration on remineralization of initial enamel lesion in vitro. Biomed Mater. 4, 034104 (2009)CrossRefGoogle Scholar
  10. 10.
    Santos, C., Luklinska, Z.B., Clarke, R.L., Davy, K.W.M.: Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites. J Mater Sci Mater Med. 12, 565–573 (2001)CrossRefGoogle Scholar
  11. 11.
    Calabrese, L., Fabiano, F., Curro, M., Borsellino, C., Bonaccorsi, L.M., Fabiano, V., Ientile, R., Proverbio, E.: Hydroxyapatite whiskers based resin composite versus commercial dental composites: mechanical and biocompatibility characterization. Adv Mater Sci Eng. 2016, 1–9 (2016)CrossRefGoogle Scholar
  12. 12.
    Pfeifer, C.S.: Polymer-based direct filling materials. Dent Clin N Am. 61, 733–750 (2017)CrossRefGoogle Scholar
  13. 13.
    Shahid, S., Hassan, U., Billington, R.W., Hill, R.G., Anderson, P.: Glass ionomer cements: effect of strontium substitution on esthetics, radiopacity and fluoride release. Dent Mater. 30, 308–313 (2014)CrossRefGoogle Scholar
  14. 14.
    Lippert, F., Hara, A.T.: Strontium and caries: a long and complicated relationship. Caries Res. 47, 34–49 (2013)CrossRefGoogle Scholar
  15. 15.
    Drouet, C., Carayon, M.T., Combes, C., Rey, C.: Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater Sci Eng C. 28, 1544–1550 (2008)CrossRefGoogle Scholar
  16. 16.
    Capuccini, C., Torricelli, P., Boanini, E., Gazzano, M., Giardino, R., Bigi, A.: Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A. 89, 594–600 (2009)CrossRefGoogle Scholar
  17. 17.
    Thuy, T.T., Nakagaki, H., Kato, K., Hung, P.A., Inukai, J., Tsuboi, S., Nakagaki, H., Hirose, M.N., Igarashi, S., Robinson, C.: Effect of strontium in combination with fluoride on enamel remineralisation in vitro. Arch Oral Biol. 3, 1017–1022 (2008)CrossRefGoogle Scholar
  18. 18.
    Curzon, M.E.: The relation between caries prevalence and strontium concentrations in drinking water, plaque, and surface enamel. J Dent Res. 64, 1386–1388 (1985)CrossRefGoogle Scholar
  19. 19.
    Yuan, Z., Li, S., Liu, J., Kong, X., Gao, T.: Structural, electronic, dynamical and thermodynamic properties of Ca10(PO4)6(OH)2 and Sr10(PO4)6(OH)2: first-principles study. Int J Hydrog Energy. 43, 13639–13648 (2018)CrossRefGoogle Scholar
  20. 20.
    Sameie, H., Sabbagh Alvani, A.A., Naseri, N., Du, S., Rosei, F.: First-principles study on ZnV2O6 and Zn2V2O7: two new photoanode candidates for photoelectrochemical water oxidation. Ceram Int. 44, 6607–6613 (2018)CrossRefGoogle Scholar
  21. 21.
    Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, Refson, K., Payne, Payne, M.C.: First principles methods using CASTEP. Z Kristallogr Cryst Mater. 220, 567–570 (2005)CrossRefGoogle Scholar
  22. 22.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys Rev Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  23. 23.
    Mostafa, N.Y., Brown, P.W.: Computer simulation of stoichiometric hydroxyapatite: structure and substitutions. J Phys Chem Solids. 68, 431–437 (2007)CrossRefGoogle Scholar
  24. 24.
    Tkatchenko, A., Scheffler, M.: Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett. 102, 73005 (2009)CrossRefGoogle Scholar
  25. 25.
    Pack, J.D., Monkhorst, H.J.: Special points for Brillouin-zone integrations - a reply. Phys Rev B. 16, 1748–1749 (1977)CrossRefGoogle Scholar
  26. 26.
    Matsunaga, K., Kuwabara, A.: First-principles study of vacancy formation in hydroxyapatite. Phys Rev B. 75, 014102 (2007)CrossRefGoogle Scholar
  27. 27.
    Bhat, S.S., Waghmare, U.V., Ramamurty, U.: First-principles study of structure, vibrational, and elastic properties of stoichiometric and calcium-deficient hydroxyapatite. Cryst Growth Des. 14, 3131–3141 (2014)CrossRefGoogle Scholar
  28. 28.
    Hughes, J.M., Cameron, M., Crowley, K.D.: Structural variations in natural F, OH, and Cl apatites. Am Mineral. 74, 870–876 (1989)Google Scholar
  29. 29.
    Murad, M.C., Sopyan, I., Ramesh, S.: Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior. Trends Biomater Artif Organs. 23, 105–113 (2009)Google Scholar
  30. 30.
    Menendez-Proupin, E., Cervantes-Rodriguez, S., Osorio-Pulgar, R., Franco-Cisterna, M., Camacho-Montes, H., Fuentes, M.E.: Computer simulation of elastic constants of hydroxyapatite and fluorapatite. J Mech Behav Biomed Mater. 4, 1011–1020 (2011)CrossRefGoogle Scholar
  31. 31.
    Katz, J.L., Ukraincik, K.: On the anisotropic elastic properties of hydroxyapatite. J Biomech. 4, 221–227 (1971)CrossRefGoogle Scholar
  32. 32.
    Born, M., Huang, K.: Dynamical theory of crystal lattices. Oxford University Press, Oxford (1954)Google Scholar
  33. 33.
    Voigt, W.: Lehrbruch Des Krystallphysik, Springer Fachmedien Wiesbaden GmbH, Wiesbaden, 1966 (in German).
  34. 34.
    Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z Angew Math Mech. 9, 49–58 (1929)CrossRefGoogle Scholar
  35. 35.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 65, 349 (1952)CrossRefGoogle Scholar
  36. 36.
    Chung, D.H., Buessem, W.R., Vahldiek, F.W., Mersol, S.A.: Anisotropy in single crystal refractory compounds. Plenum Press, New York (1968)Google Scholar
  37. 37.
    Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys Rev Lett. 101, 055504 (2008)CrossRefGoogle Scholar
  38. 38.
    Gilmore, R.S., Katz, J.L.: Elastic properties of apatites. J Mater Sci. 17, 1131–1141 (1982)CrossRefGoogle Scholar
  39. 39.
    Wang, M., Xia, C., Wu, Y., Chen, D., Chen, Z., Ma, N., Wang, H.: Phase stability, elastic and electronic properties of Hf-Rh intermetallic compounds from first principles calculations. RSC Adv. 7, 20241–20251 (2017)CrossRefGoogle Scholar
  40. 40.
    Chen, S., Sun, Y., Duan, Y.H., Huang, B., Peng, M.J.: Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. J Alloys Compd. 630, 202–208 (2015)CrossRefGoogle Scholar
  41. 41.
    Chen, D., Chen, Z., Wu, Y., Wang, M., Ma, N., Wang, H.: First-principles study of mechanical and electronic properties of TiB compound under pressure. Intermetallics. 52, 64–71 (2014)CrossRefGoogle Scholar
  42. 42.
    Sakaguchi, R.L., Wiltbank, B.D., Murchison, C.F.: Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics. Dent Mater. 20, 397–401 (2004)CrossRefGoogle Scholar
  43. 43.
    Wang, L., Zhang, H.W., Deng, X.: Influence of defects on mechanical properties of bicrystal copper grain boundary interfaces. J Phys D. 41, 135304 (2008)CrossRefGoogle Scholar
  44. 44.
    Moosakhani, S., Sabbagh Alvani, A.A., Sarabi, A.A., Sameie, H., Salimi, R., Kiani, S., Ebrahimi, Y.: Non-toxic silver iodide (AgI) quantum dots sensitized solar cells. Mater Res Bull. 60, 38–45 (2014)CrossRefGoogle Scholar
  45. 45.
    Kraisler, E., Kronik, L.: Fundamental gaps with approximate density functionals: the derivative discontinuity revealed from ensemble considerations. J Chem Phys. 140, 18A540–18A549 (2014)CrossRefGoogle Scholar
  46. 46.
    Sameie, H., Alvani, A.A.S., Mei, B.T., Naseri, N., Rosei, F., Mul, G.: Photocatalytic activity of ZnV2O6/reduced graphene oxide nanocomposite: from theory to experiment. J Electrochem Soc. 165, H353–H359 (2018)CrossRefGoogle Scholar
  47. 47.
    Paschotta, R.: Encyclopedia of laser physics and technology, 1st edn. Wiley-VCH, New York (2008)Google Scholar
  48. 48.
    Li, P., Fan, W., Li, Y., Sun, H., Cheng, X., Zhao, X., Jiang, M.: First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride. Inorg Chem. 49, 6917–6924 (2010)CrossRefGoogle Scholar
  49. 49.
    Salimi, R., Sabbagh Alvani, A.A., Du N Naseri, S.F., Poelman, D.: Visible-enhanced photocatalytic performance of CuWO4/WO3 hetero-structures: incorporation of plasmonic Ag nanostructures. New J Chem. 42, 11109–11116 (2018)CrossRefGoogle Scholar
  50. 50.
    Suzuki, H., Taira, M., Wakasa, K., Yamaki, M.: Refractive-index-adjustable fillers for visible-light-cured dental resin composites: preparation of TiO2-SiO2 glass powder by the sol-gel process. J Dent Res. 70, 883–888 (1991)CrossRefGoogle Scholar
  51. 51.
    Bassi, M.A., Bassi, S.A., Andrisani, C., Lico, S., Baggi, L., Lauritano, D.: Light diffusion through composite restorations added with spherical glass mega fillers. Oral Implantol. 9, 80–89 (2016)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Color and Polymer Research Center (CPRC)Amirkabir University of TechnologyTehranIran
  2. 2.Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyTehranIran
  3. 3.Advanced Materials Group, Iranian Color Society (ICS)TehranIran

Personalised recommendations