Skip to main content

Advertisement

Log in

Hydroxyapatite—a promising sunscreen filter

  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Exposure to ultraviolet (UV) radiation has been known to cause skin cancer, erythema, and sunburn. Continuous efforts have been made to make sunscreens more efficient and non-toxic. Inorganic sunscreens like TiO2 and ZnO are continued to be used for a few decades, and they are efficient in giving protection against harmful UV radiation, but they are photochemically active as well. They generate free radicals upon irradiation, which leads to reactive oxygen species (ROS) generation which is harmful to the human skin. Hydroxyapatite (HA) is a biocompatible material as it has a composition the same as the mineral content of the human bone; therefore, it is suitable for the dermatological application. Though HA itself does not provide protection against UV, studies on doped HA with various ions showed excellent performance. Pure HA absorbs only between 200 and 340 nm, with an intense band below 247 nm. HA doped with bivalent Zn2+, Fe2+, and trivalent Fe3+ and Cr3+, showed absorbance in the entire UV region. TiO2 provides absorbance in the entire UV range, while ZnO does so only in UVA. Compared to HA (refractive index, n = 1.6), TiO2 (n = 2.6) and ZnO (n = 1.9) have higher refractive index, which gives unwanted whitening effect. Additional properties can be brought in HA composites by adding material while retaining their individual properties. As HA is not photocatalytic, it does not lead to a generation of free radicals. This paper throws light on several aspects of HA-based sunscreen filters as an emerging future cosmetic material, and brief analysis and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rai, R., Shanmuga, S.C., Srinivas, C.: Update on photoprotection. Indian J Dermatol. 57, 335–342 (2012)

    Google Scholar 

  2. Amin, R.M., Elfeky, S.A., Verwanger, T., Krammer, B.: A new biocompatible nanocomposite as a promising constituent of sunscreens. Mater. Sci. Eng. C. 63, 46–51 (2016)

    CAS  Google Scholar 

  3. Rünger, T.: Role of UVA in the pathogenesis of melanoma and non-melanoma skin cancer: a short review. Photodermatol Photoimmunol Photomed. 15, 212–216 (1999)

    Google Scholar 

  4. Gardiner, J., Bailey, P., Makino, T., Heerink, B.: Colipa guidelines: international sun protection factor (SPF) test method. Eur Cosmet Assoc. 1, 1–9 (2006)

    Google Scholar 

  5. De Araujo, T., De Souza, S., Miyakawa, W., De Sousa, E.: Phosphates nanoparticles doped with zinc and manganese for sunscreens. Mater Chem Phys. 124, 1071–1076 (2010)

    Google Scholar 

  6. Manaia, E.B., Kaminski, R.C.K., Corrêa, M.A., Chiavacci, L.A.: Inorganic UV filters. Braz J Pharm Sci. 49, 201–209 (2013)

    CAS  Google Scholar 

  7. Jain, S., Jain, N.: Multiparticulate carriers for sun-screening agents. Int J Cosmet Sci. 32, 89–98 (2010)

    CAS  Google Scholar 

  8. Narayanan, D.L., Saladi, R.N., Fox, J.L.: Ultraviolet radiation and skin cancer. Int J Dermatol. 49, 978–986 (2010)

    Google Scholar 

  9. Rebecca, L., Siegel, K., Miller, D., Ahmedin, J.: Cancer statistic. CA Cancer J Clin. 68, 7–30 (2018)

    Google Scholar 

  10. Moyal, D.D., Fourtanier, A.M.: Broad-spectrum sunscreens provide better protection from solar ultraviolet–simulated radiation and natural sunlight–induced immunosuppression in human beings. J Am Acad Dermatol. 58, S149–S154 (2008)

    Google Scholar 

  11. Séïté, J.-F., Cornec, D., Renaudineau, Y., Youinou, P., Mageed, R.A., Hillion, S.: IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes. Blood. 116(10), 1698–1704 (2010)

    Google Scholar 

  12. Madan, V., Lear, J.T., Szeimies, R.-M.: Non-melanoma skin cancer. Lancet. 375, 673–685 (2010)

    CAS  Google Scholar 

  13. Jansen, R., Osterwalder, U., Wang, S.Q., Burnett, M., Lim, H.W.: Photoprotection: part II. Sunscreen: development, efficacy, and controversies. J Am Acad Dermatol. 69, 861–867 (2013)

    Google Scholar 

  14. De Araujo, T., De Souza, S., De Sousa, E.: Effect of Zn2+, Fe3+ and Cr3+ addition to hydroxyapatite for its application as an active constituent of sunscreens. J Phys Conf Ser. 249, 1–7 (2010)

    Google Scholar 

  15. Piccirillo, C., Rocha, C., Tobaldi, D., Pullar, R., Labrincha, J., Ferreira, M., Castro, P.M., Pintado, M.: A hydroxyapatite–Fe2O3 based material of natural origin as an active sunscreen filter. J Mater Chem B. 2, 5999–6009 (2014)

    CAS  Google Scholar 

  16. Morsy, R., Ali, S.S., El-Shetehy, M.: Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct. 1143, 251–258 (2017)

    CAS  Google Scholar 

  17. Pyo, E., Kim, Y., Park, J.B., Kwon, K.Y.: A silver-doped hydroxyapatite for an active sunscreen material. Bull Kor Chem Soc. 37, 1395–1396 (2016)

    CAS  Google Scholar 

  18. Teixeira, M., Piccirillo, C., Tobaldi, D., Pullar, R., Labrincha, J., Ferreira, M., Castro, P.M., Pintado, M.: Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen. Mater Sci Eng C. 71, 141–149 (2017)

    Google Scholar 

  19. Pelizzo M., Zattra E., Nicolosi P., Peserico A., Garoli D., Alaibac M.: In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Network, ISRN Dermatol, 1–4 (2012). https://doi.org/10.5402/2012/352135

    Google Scholar 

  20. Antoniou, C., Kosmadaki, M.G., Stratigos, A.J., Katsambas, A.D.: Sunscreens–what’s important to know. J Eur Acad Dermatol Venereol. 22, 1110–1119 (2008)

    CAS  Google Scholar 

  21. Wang, S.Q., Balagula, Y., Osterwalder, U.: Photoprotection: a review of the current and future technologies. Dermatol Ther. 23, 31–47 (2010)

    CAS  Google Scholar 

  22. Serpone, N., Dondi, D., Albini, A.: Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorganica Chim Acta. 360, 794–802 (2007)

    CAS  Google Scholar 

  23. Popov, A.P., Priezzhev, A.V., Lademann, J., Myllylä, R.: Monte Carlo calculations of UV protective properties of emulsions containing TiO2, Si and SiO2 nanoparticles. In: Advanced Laser Technologies 2007, International Society for Optics and Photonics, vol. 7022, pp. 702211–702217 (2008)

    Google Scholar 

  24. Smijs, T.G., Pavel, S.: Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 4, 95 (2011)

    CAS  Google Scholar 

  25. Monteiro-Riviere, N.A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A.O., Riviere, J.E.: Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci. 123, 264–280 (2011)

    CAS  Google Scholar 

  26. Nohynek, G., Dufour, E., Roberts, M.S.: Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol. 21, 136–149 (2008)

    CAS  Google Scholar 

  27. Newman, M.D., Stotland, M., Ellis, J.I.: The safety of nanosized particles in titanium dioxide–and zinc oxide–based sunscreens. J Am Acad Dermatol. 61, 685–692 (2009)

    CAS  Google Scholar 

  28. Gilbert, E., Pirot, F., Bertholle, V., Roussel, L., Falson, F., Padois, K.: Commonly used UV filter toxicity on biological functions: review of last decade studies. Int J Cosmet Sci. 35, 208–219 (2013)

    CAS  Google Scholar 

  29. Osmond, M.J., Mccall, M.J.: Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology. 4, 15–41 (2010)

    CAS  Google Scholar 

  30. Tucci, P., Porta, G., Agostini, M., Dinsdale, D., Iavicoli, I., Cain, K., Finazzi-Agro, A., Melino, G., Willis, A.: Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis. 4(3), 1–11 (2013)

    Google Scholar 

  31. Sayre, R.M., Dowdy, J.C., Gerwig, A.J., Shlelds, W.J., Lioyd, R.V.: Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone. Photochem Photobiol. 81, 452–456 (2005)

    CAS  Google Scholar 

  32. Sánchez-Quiles, D., Tovar-Sánchez, A.: Sunscreens as a source of hydrogen peroxide production in coastal waters. Environ Sci Technol. 48, 9037–9042 (2014)

    Google Scholar 

  33. Virkutyte, J., Al-Abed, S.R.: Statistical evaluation of potential damage to the Al(OH)3 layer on nTiO2 particles in the presence of swimming pool and seawater. J Nanopart Res. 14, 787 (2012)

    Google Scholar 

  34. Lewicka, Z.A., Benedetto, A.F., Benoit, D.N., William, W.Y., Fortner, J.D., Colvin, V.L.: The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J Nanopart Res. 13, 3607 (2011)

    CAS  Google Scholar 

  35. Webster, T.J., Massa-Schlueter, E.A., Smith, J.L., Slamovich, E.B.: Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 25, 2111–2121 (2004)

    CAS  Google Scholar 

  36. Harry, R.G.: Harry’s Cosmeticology, 6th edn. Leonard Hill Books an Intertext Publisher, London (1973)

    Google Scholar 

  37. Miyaji, F., Kono, Y., Suyama, Y.: Formation and structure of zinc-substituted calcium hydroxyapatite. Bull Mater Sci. 40, 209–220 (2005)

    CAS  Google Scholar 

  38. Villalobos-Hernandez, J., Müller-Goymann, C.: Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale. Int J Pharm. 322, 161–170 (2006)

    CAS  Google Scholar 

  39. Pardo, J., Peña, J., Merino, R., Cases, R., Larrea, A., Orera, V.: Spectroscopic properties of Er3+ and Nd3+ doped glasses with the 0.8 CaSiO3–0.2 Ca3(PO4)2 eutectic composition. J Non-Cryst Solids. 298, 23–31 (2002)

    CAS  Google Scholar 

  40. Rhazi, M., Desbrieres, J., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym Int. 49, 337–344 (2000)

    CAS  Google Scholar 

  41. No, H.K., Kim, S.H., Lee, S.H., Park, N.Y., Prinyawiwatkul, W.: Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr Polym. 65, 174–178 (2006)

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Science and Engineering Research Board (SERB), Department of Science and Technology (ECR/2015/000339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Hadagalli, K., Bhat, P. et al. Hydroxyapatite—a promising sunscreen filter. J Aust Ceram Soc 56, 345–351 (2020). https://doi.org/10.1007/s41779-019-00354-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00354-2

Keywords

Navigation