Advertisement

Modification of surface charge characteristics for unsupported nanostructured titania–zirconia UF/NF membrane top layers with calcination temperature

  • İlker ErdemEmail author
  • Muhsin Çiftçioğlu
Research
  • 39 Downloads

Abstract

Ceramic membranes are more advantageous alternatives especially for harsh working conditions when compared with the polymeric membranes. The porous multilayer structure of the ceramic membranes (composed of support, intermediate, and top layers) can be prepared via different oxides. Titania and zirconia, having superior properties, are mainly preferred for the top layer formation. The separation properties of the membrane are both dependent on pore morphology and surface charge of the oxide(s) forming the top layer. The effect of surface charge in separation may be very significant in case of filtration of charged species with relatively lower mass as in the ultrafiltration (UF) and nanofiltration (NF). In this study, unsupported membrane top layers were prepared with varying titania/zirconia ratios by sol-gel technique. Their surface charges at different pH conditions after calcination at varying temperatures (400°, 500°, and 600 °C) were determined. The surface charge of the pure titania (full Ti) top layer was decreasing with the increasing calcination temperature. The highest magnitudes of zeta potential for both acidic and basic conditions were measured via Zr rich top layer (TiZr2575) at calcination temperatures ≥ 500 °C, which was composed of anatase, rutile (titania), and tetragonal (zirconia) phases after calcination. The tailor-made top layer can be prepared with modifications during membrane preparation.

Keywords

Titania Zirconia Membrane Calcination Surface charge 

Notes

References

  1. 1.
    Van Gestel, T., Kruidhof, H., Blank, D.H.A., Bouwmeester, H.J.M.: ZrO2 and TiO2 membranes for nanofiltration and pervaporation. Part 1. preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO < 300. J. Membr. Sci. 284(1–2), 128–136 (2006)CrossRefGoogle Scholar
  2. 2.
    Van Gestel, T., Sebold, D., Kruidhof, H., Bouwmeester, H.J.M.: ZrO2 and TiO2 membranes for nanofiltration and pervaporation. Part 2. development of ZrO2 and TiO2 toplayers for pervaporation. J. Membr. Sci. 318(1–2), 413–421 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhang, H., Quan, X., Chen, S., Zhao, H., Zhao, Y., Li, W.: Zirconia and titania composite membranes for liquid phase separation: preparation and characterization. Desalination. 190(1–3), 172–180 (2006)CrossRefGoogle Scholar
  4. 4.
    Erdem, İ.: Sol-gel applications of ceramic membrane preparation. AIP Conf Proc. 1809, 020011 (2017)CrossRefGoogle Scholar
  5. 5.
    Van Gestel, T., Sebold, D., Hauler, F., Meulenberg, W.A., Buchkremer, H.: Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: evaluation of SiO2, ZrO2, Y2O3-ZrO2 and TiO2-ZrO2 sol-gel membranes. J. Membr. Sci. 359(1–2), 64–79 (2010)CrossRefGoogle Scholar
  6. 6.
    Aust, U., Benfer, S., Dietze, M., Rost, A., Tomandl, G.: Development of microporous ceramic membranes in the system TiO2/ZrO2. J. Membr. Sci. 281(1–2), 463–471 (2006)CrossRefGoogle Scholar
  7. 7.
    Erdem, İ., Çiftçioğlu, M.: Influence of calcination temperature on microstructure and surface charge of membrane top layers composed of zirconia nanoparticles. J. Aust. Ceram. Soc. 51–1(2015), 134–138 (2015)Google Scholar
  8. 8.
    Liang, L., Xu, Y., Hou, X., Wu, D., Sun, Y., Li, Z., Wu, Z.: Small-angle X-ray scattering study on the microstructure evolution of zirconia nanoparticles during calcination. J. Solid State Chem. 179(4), 959–967 (2006)CrossRefGoogle Scholar
  9. 9.
    Buchmeiser, M.: New synthetic ways for the preparation of high-performance liquid chromatography supports. J. Chromatogr. A. 918(2), 233–266 (2001)CrossRefGoogle Scholar
  10. 10.
    Almecija, M.C., Ibanez, R., Guadix, A., Guadix, E.M.: Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. J. Membr. Sci. 288, 28–35 (2007)CrossRefGoogle Scholar
  11. 11.
    Mazzoni, C., Orlandini, F., Bandini, S.: Role of electrolyte type on TiO2-ZrO2 nanofiltration membranes performances. Desalination. 240, 227–235 (2009)CrossRefGoogle Scholar
  12. 12.
    Erdem, İ., Çiftçioǧlu, M., Harsa, Ş.: Preparation of ceramic composite membranes for protein separation. Key Eng. Mater. 264–268(III), 2251–2254 (2004)CrossRefGoogle Scholar
  13. 13.
    Shang, R., Verliefde, A.R.D., Hu, J., Zeng, Z., Lu, J., Kemperman, A.J.B., Deng, H., Nijmeijer, K., Heijman, S.G.J., Rietveld, L.C.: Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection. Water Res. 48, 498–507 (2014)CrossRefGoogle Scholar
  14. 14.
    Yurtsever, H.A., Çiftçioğlu, M.: The effect of rare earth element doping on the microstructural evolution of sol-gel titania powders. J. Alloys Compd. 695, 1336–1353 (2017)CrossRefGoogle Scholar
  15. 15.
    Benfer, S., Popp, U., Richter, H., Siewert, C., Tomandl, G.: Development and characterization of ceramic nanofiltration membranes. Sep. Purif. Technol. 22-23, 231–237 (2001)CrossRefGoogle Scholar
  16. 16.
    Perez-Hernandez, R., Mendoza-Anaya, D., Fernandez, M.E., Gomez-Cortes, A.: Synthesis of mixed ZrO2-TiO2 oxides by sol-gel: microstructural characterization and infrared spectroscopy studies of NOx. J. Mol. Catal. A Chem. 281, 200–206 (2008)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2019

Authors and Affiliations

  1. 1.Faculty of Engineering, Material Science and Nanotechnology Engineering DepartmentAbdullah Gül UniversityKocasinanTurkey
  2. 2.Chemical Engineering Departmentİzmir Institute of TechnologyUrlaTurkey

Personalised recommendations