Skip to main content
Log in

The effect of carbon fiber plasma treatment on the wettability and interlaminar shear strength of geopolymer composite

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Interlaminar shear strength (ILSS) of composite depends on the adhesion between its reinforcement and matrix. To improve the mechanical properties of geopolymer composite reinforced with carbon fibers (CFs), the surface of the fibers was modified by plasma treatment in four types of argon atmosphere. The modification of the CFs was evaluated by contact angle measurement, scanning electron microscopy, and X-ray photoelectron spectroscopy. Geopolymer matrix was prepared by the dissolution of metakaolin and an amorphous silica in an aqueous solution of potassium silicate. Vacuum bagging technique was used to prepare the CF/geopolymer composite. The mechanical properties of the composites were determined by ILSS test. The results were compared to results obtained for untreated carbon fibers and their composites. A significant increase of the wettability of CFs was achieved for all plasma treatments and the increase of oxygen functional groups was detected on the CF surface. The results of the mechanical test confirmed improved adhesion for composite samples with CFs treated by plasma in argon atmosphere. Other samples exhibited low or no adhesion between the fibers and matrix. This leads to the conclusion that there are more effects influencing the adhesion than only the properties of CFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Choi, M.H., Jeon, B.H., Chung, I.J.: The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer. (2000). https://doi.org/10.1016/S0032-3861(99)00532-7

    Article  CAS  Google Scholar 

  2. Wu, Z., Pittman, C.U., Gardner, S.D.: Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon. (1995). https://doi.org/10.1016/0008-6223(95)00145-4

    Article  CAS  Google Scholar 

  3. Qian, H., Bismarck, A., Greenhalgh, E.S., Shaffer, M.S.P.: Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Composites Part A. (2010). https://doi.org/10.1016/j.compositesa.2010.04.004

    Article  Google Scholar 

  4. Lee, E.-S.: Lee, C-h., Chun, Y-S., Han, C-j., Lim, D-S.: effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites. Composites Part B. (2017). https://doi.org/10.1016/j.compositesb.2016.10.088

    Article  CAS  Google Scholar 

  5. Tiwari, S., Sharma, S., Panier, S., Mutel, B., Mitschang, P., Bijwe, J.: Influence of cold remote nitrogen oxygen plasma treatment on carbon fabric and its composites with specialty polymers. J Mater Sci. (2011). https://doi.org/10.1007/s10853-010-4847-z

    Article  Google Scholar 

  6. Borroj, M.B., Shoushtari, A.M., Haji, A., Sabet, E.N.: Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology. Compos Sci Technol. (2016). https://doi.org/10.1016/j.compscitech.2016.03.020

    Article  CAS  Google Scholar 

  7. Fowkes, F.M.: Role of acid-base interfacial bonding in adhesion. J Adhes Sci Technol. (1987). https://doi.org/10.1163/156856187X00049

    Article  CAS  Google Scholar 

  8. Park, S.-J., Kim, M.-H.: Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites. J Mater Sci. (2000). https://doi.org/10.1023/A:1004754100310

    Article  CAS  Google Scholar 

  9. Barbosa, V.F.F., MacKenyie, K.J.D., Thaumaturgo, C.: Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater. (2000). https://doi.org/10.1016/S1466-6049(00)00041-6

    Article  CAS  Google Scholar 

  10. Wang, S., Chen, Z.-H., Ma, W.-J., Ma, Q.-S.: Influence of heat treatment on physical–chemical properties of PAN-based carbon fiber. Ceram Int. (2006). https://doi.org/10.1016/j.ceramint.2005.02.014

    Article  CAS  Google Scholar 

  11. Moosburger-Will, J., Lachner, E., Loffler, M., Kunzmann, C., Greisel, M., Ruhland, K., Horn, S.: Adhesion of carbon fibers to amine hardened epoxy resin: influence of ammonia plasma functionalization of carbon fibers. Appl Surf Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.05.057

    Article  CAS  Google Scholar 

  12. Sun, J., Zhao, F., Yao, Y., Jin, Z., Liu, X., Huang, Y.: High efficiency and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion. Appl Surf Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.03.279

    Article  CAS  Google Scholar 

  13. Jin, Z., Zhang, Z., Meng, L.: Effects of ozone method treating carbon fibers on mechanical properties of carbon/carbon composites. Mater Chem Phys. (2006). https://doi.org/10.1016/j.matchemphys.2005.08.002

    Article  CAS  Google Scholar 

  14. Bauer, A., Meinderink, D., Giner, I., Steger, H., Weitl, J., Grundmeier, G.: Electropolymerization of acrylic acid on carbon fibers for improved epoxy/fiber adhesion. Surf Coat Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.04.039

    Article  CAS  Google Scholar 

  15. Cheng, X.H., Shang-guan, Q.Q.: Effect of rare earths on mechanical and tribological properties of carbon fibers reinforced PTFE composite. Trib Lett. (2006). https://doi.org/10.1007/s11249-006-9033-8

    Article  Google Scholar 

  16. Jones, C.: The chemistry of carbon fibre surfaces and its effect on interfacial phenomena in fibre/epoxy composites. Compos Sci Technol. (1991). https://doi.org/10.1016/0266-3538(91)90021-G

    Article  CAS  Google Scholar 

  17. Park, O.-K., Kim, W.Y., Kim, S.M., You, N.-H., Jeong, Y., Lee, H.S., Ku, B.-C.: Effect of oxygen plasma treatment on the mechanical properties of carbon nanotube fibers. Mater Lett. (2015). https://doi.org/10.1016/j.matlet.2015.04.141

    Article  CAS  Google Scholar 

  18. He, R., Chang, Q., Huang, X., Bo, J.: Improved mechanical properties of carbon fiber reinforced PTFE composites by growing graphene oxide on carbon fiber surface. Compos Interfaces. (2018). https://doi.org/10.1080/09276440.2018.1451677

    Article  CAS  Google Scholar 

  19. Cech, V., Knob, A., Hosein, H.-A., Babik, A., Lepcio, P., Ondreas, F., Drzal, L.T.: Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Composites: Part A. (2014). https://doi.org/10.1016/j.compositesa.2013.12.003

    Article  CAS  Google Scholar 

  20. Sun, J., Zhao, F., Yao, Y., Jin, Z., Liu, X., Huang, Y.: High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion. Appl Surf Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.03.279

    Article  CAS  Google Scholar 

  21. Jackson, P.R., Parthasarathya, T.A., Ross, A., Radford, D.W.: Use of interphase in geopolymer matrix composites for improved toughness. Ceram Int. (2019). https://doi.org/10.1016/j.ceramint.2018.10.076

    Article  CAS  Google Scholar 

  22. Kedroňová, E., Zajíčková, L., Hegemann, D., Klíma, M., Michlíček, M., Manakhov, A.: Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers. Plasma Process Polym. (2015). https://doi.org/10.1002/ppap.201400235

    Article  Google Scholar 

  23. Mašek, Z., Diblíková, L.: The effect of curing temperature on the properties and structure of geopolymer composite based on potassium and metakaolin. Ceramics-Silikáty. (2018). https://doi.org/10.13168/cs.2018.0025

  24. Bismarck, A., Kumru, M.E., Springer, J., Simitzis, J.: Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems. Appl Surf Sci. (1999). https://doi.org/10.1016/S0169-4332(98)00929-5

    Article  CAS  Google Scholar 

  25. Donnet, J.B., Brendle, M., Dhami, T.L., Bahl, O.P.: Plasma treatment effect on the surface energy of carbon and carbon fibers. Carbon. (1986). https://doi.org/10.1016/0008-6223(86)90186-7

    Article  CAS  Google Scholar 

  26. Wang, T.K., Donnet, J.-B., Peng, J.C.M., Rebouillat, S.: Surface properties of carbon fibers. In: Donnet, J.-B., Wang, T.K., Rebouillat, S., Peng, J.C.M. (eds.) Carbon Fibers, pp. 253–280. CRC Press, Taylor & Francis Group, LLC, Florida (2016)

    Google Scholar 

  27. Harvey, J., Kozlowski, C., Sherwood, P.M.A.: X-ray photoelectron spectroscopic studies of carbon fibre surfaces. J Mater Sci. (1987). https://doi.org/10.1007/BF01132378

    Article  CAS  Google Scholar 

  28. Zilke, U., Hüttinger, K.J., Hoffman, W.P.: Surface oxidized carbon fibers: II. Chemical modification. Carbon. (1996). https://doi.org/10.1016/0008-6223(96)00033-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This result was obtained within the institutional support of the Ministry of Industry and Trade of the Czech Republic for the development of a research organization (decision No. 12/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Diblíková.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diblíková, L., Mašek, Z. & Král, M. The effect of carbon fiber plasma treatment on the wettability and interlaminar shear strength of geopolymer composite. J Aust Ceram Soc 55, 1139–1145 (2019). https://doi.org/10.1007/s41779-019-00328-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00328-4

Keywords

Navigation