Skip to main content

Advertisement

Log in

Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Oysters abound on the west coast of Taiwan and waste oyster shell production exceeds 0.12 million tons per year. The wide availability and natural-biological origin of oyster shells, containing several trace elements that will remain in the crystalline structure of synthesized HA making its composition alike human bone, will benefit the overall physiological functioning after implantation. In this study, solid-state reactions between oyster shell powders (CaCO3) and dicalcium phosphate dihydrate (DCPD) were performed through ball milling and subsequently calcining at various temperatures (900, 1000, 1100, and 1200 °C) and durations (1, 3, 5, and 10 h). The XRD results showed that we have successfully synthesized high phase-purity HA from DCPD and oyster shell powders through 1 h of milling and then calcined at 1000 °C for 10 h or at 1200 °C for 1 h. The crystallite size of as-prepared HA was around 45.3 nm, while the particle sizes were 2.23 and 2.59 μm, respectively. According to the FTIR analysis of as-prepared HA powders calcined at 1000 °C for 10 h or at 1200 °C for 1 h, the carbonate ion peaks observed for the specimen closely matched those of A- and B-type carbonates. It is worth noting that the final products composed of single-phase HA or biphasic calcium phosphate (HA+β-TCP) can easily be prepared by using different calcination temperatures and times, although we intended to produce pure HA from oyster shell powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou, H., Lee, J.: Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 7, 2769–2781 (2011)

    CAS  Google Scholar 

  2. Franco, P.Q., João, C.F.C., Silva, J.C., Borges, J.P.: Electrospun hydroxyapatite fibers from a simple sol-gel system. Mater Lett. 67, 233–236 (2012)

    CAS  Google Scholar 

  3. Shpak, A.P., Karbovskii, V.L., Vakh, A.G.: Electronic structure of isomorphically substituted strontium apatite. J Electron Spectrosc. 137–140, 585–589 (2004)

    Google Scholar 

  4. Meejoo, S., Maneeprakorn, W., Winotai, P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim Acta. 447, 115–120 (2006)

    CAS  Google Scholar 

  5. Tadic, D., Peters, F., Epple, M.: Continuous synthesis of amorphous apatites. Biomaterials. 23, 2553–2559 (2002)

    CAS  Google Scholar 

  6. Stoch, A., et al.: FTIR absorption–reflection study of biomimetic growth of phosphates on titanium implants. J Mol Struct. 555, 375–382 (2000)

    CAS  Google Scholar 

  7. Murugan, R., Ramakrishna, S.: Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater. 2, 201–206 (2006)

    CAS  Google Scholar 

  8. Kaygili, O., Dorozhkin, S.V., Keser, S.: Synthesis and characterization of Ce-substituted hydroxyapatite by sol–gel method. Mater Sci Eng C. 42, 78–82 (2014)

    CAS  Google Scholar 

  9. Gentile, P., Wilcock, C.J., Miller, C.A., Moorehead, R., Hatton, P.V.: Process optimisation to control the physico-chemical characteristics of biomimetic nanoscale hydroxyapatites prepared using wet chemical precipitation. Materials. 8, 2297–2310 (2015)

    CAS  Google Scholar 

  10. Yang, Y., Wu, Q., Wang, M., Long, J., Mao, Z., Chen, X.: Hydrothermal synthesis of hydroxyapatite with different morphologies: influence of supersaturation of the reaction system. Cryst Growth Des. 14, 4864–4871 (2014)

    CAS  Google Scholar 

  11. Xue, C., Chen, Y., Huang, Y., Zhu, P.: Hydrothermal synthesis and biocompatibility study of highly crystalline carbonated hydroxyapatite nanorods. Nanoscale Res Lett. 10, 316 (2015)

    Google Scholar 

  12. Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P., Ho, W.F.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram Int. 39, 8183–8188 (2013)

    CAS  Google Scholar 

  13. Rhee, S.H.: Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials. 23, 1147–1152 (2002)

    CAS  Google Scholar 

  14. Wu, S.C., Hsu, H.C., Hsu, S.K., Chang, Y.C., Ho, W.F.: Effects of heat treatment on the synthesis of hydroxyapatite from eggshell powders. Ceram Int. 41, 10718–10724 (2015)

    CAS  Google Scholar 

  15. Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., Wu, S.C.: Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction. Ceram Int. 39, 6467–6473 (2013)

    CAS  Google Scholar 

  16. Wu, S.C., Hsu, H.C., Hsu, S.K., Tseng, C.P., Ho, W.F.: Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv Powder Technol. 28, 1154–1158 (2017)

    CAS  Google Scholar 

  17. Meng, L.Y., Wang, B., Ma, M.G., Lin, K.L.: The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem. 12, 63–83 (2016)

    Google Scholar 

  18. Suchanek, W., Yoshimura, M.: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res. 13, 94–117 (1998)

    CAS  Google Scholar 

  19. Benaqqa, C., Chevalier, J., Saädaoui, M., Fantozzi, G.: Slow crack growth behavior of hydroxyapatite ceramics. Biomaterials. 26, 6106–6112 (2005)

    CAS  Google Scholar 

  20. Roy, D.M., Linnehan, S.K.: Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 247, 220–222 (1974)

    CAS  Google Scholar 

  21. Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Kannan, S., Valério, P., Ferreira, J.M.F.: Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. J Biomed Mater Res A. 77, 160–168 (2006)

    CAS  Google Scholar 

  22. Terzioğlu, P., Öğüt, H., Kalemtaş, A.: Natural calcium phosphates from fish bones and their potential biomedical applications. Mater. Sci. Eng. C. 91, 899–911 (2018)

    Google Scholar 

  23. Shi, P., Liu, M., Fan, F., Yu, C., Lu, W., Du, M.: Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C. 90, 706–712 (2018)

    CAS  Google Scholar 

  24. Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos, A., León, B.: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 32, 478–486 (2012)

    CAS  Google Scholar 

  25. Piccirillo, C., et al.: Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones. Mater. Sci. Eng. C. 33, 103–110 (2013)

    CAS  Google Scholar 

  26. Ramesh, S., et al.: Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications. Ceram Int. 44, 10525–10530 (2018)

    CAS  Google Scholar 

  27. Lemos, A.F., et al.: Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 26, 3639–3646 (2006)

    CAS  Google Scholar 

  28. Ferraz, M.P., Monteiro, F.J., Manuel, C.M.: Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2, 74–80 (2004)

    CAS  Google Scholar 

  29. Linhart, W., et al.: Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res. 54, 162–171 (2001)

    CAS  Google Scholar 

  30. Yoon, G.L., Kim, B.T., Kim, B.O., Han, S.H.: Chemical-mechanical characteristics of crushed oyster-shell. Wast Manag. 23, 825–834 (2003)

    CAS  Google Scholar 

  31. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behavior and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 20, 2377–2387 (2000)

    CAS  Google Scholar 

  32. Fathia, M.H., Hanifia, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 202, 536–542 (2008)

    Google Scholar 

  33. Sadat-Shojai, M., Khorasani, M.-T., Jamshidi, A.: Hydrothermal processing of hydroxyapatite nanoparticles—a Taguchi experimental design approach. J Cryst Growth. 361, 73–84 (2012)

    CAS  Google Scholar 

  34. Hsu, C.K.: The preparation of biphasic porous calcium phosphate by the mixture of Ca(H2PO4)2·H2O and CaCO3. Mater Chem Phys. 80, 409–420 (2003)

    CAS  Google Scholar 

  35. Wu, S.C., Hsu, H.C., Wu, Y.N., Ho, W.F.: Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Mater Charact. 62, 1180–1187 (2011)

    CAS  Google Scholar 

  36. Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)

    CAS  Google Scholar 

  37. Olszta, M.J., Cheng, X., Jee, S.S., Kumar, R., Kim, Y.Y., Kaufman, M.J., Douglas, E.P., Coger, L.B.: Bone structure and formation: a new perspective. Mater Sci Eng R. 58, 77–116 (2007)

    Google Scholar 

  38. Balasundaram, G., Sato, M., Webster, T.J.: Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials. 27, 2798–2805 (2006)

    CAS  Google Scholar 

  39. Langstaff, S., Sayer, M., Smith, T.J., Pugh, S.M., Hesp, S.A., Thomson, W.T.: Resorbable bioceramics based on stabilized calcium phosphates. Part I: rational, design, sample preparation and material characterization. Biomaterials. 20, 1727–1741 (1999)

    CAS  Google Scholar 

  40. Sung, Y.M., Kim, D.H.: Crystallization characteristics of yttria- stabilized zirconia/hydroxyapatite composite nanopowder. J Cryst Growth. 254, 411–417 (2003)

    CAS  Google Scholar 

  41. Tetsuya, J., Dwight, T.D., Goldberg, V.M.: Comparison of hydroxyapatite and hydroxyapatite tricalcium-phosphate coatings. J Arthrop. 17, 902–909 (2002)

    Google Scholar 

  42. Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 62, 600–612 (2002)

    CAS  Google Scholar 

  43. Prabakaran, K., Rajeswari, S.: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template. Spectrochim Acta A. 74, 1127–1134 (2009)

    CAS  Google Scholar 

  44. Melville, A.J., Harrison, J., Gross, K.A., Forsythe, J.S., Trounson, A.O., Mollard, R.: Mouse embryonic stem cell colonisation of carbonated apatite surfaces. Biomaterials. 27, 615–622 (2006)

    CAS  Google Scholar 

  45. Barralet, J.E., Knowles, J.C., Best, S.M., Bonfield, W.: Thermal decomposition of synthesised carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 13, 529–533 (2002)

    CAS  Google Scholar 

  46. Redey, S.A., et al.: Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res. 45, 140–147 (1999)

    CAS  Google Scholar 

  47. Barralet, J., Akao, M., Aoki, H.: Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res. 49, 176–182 (2000)

    CAS  Google Scholar 

  48. Kalita, S.J., Verma, S.: Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater. Sci. Eng. C. 30, 295–303 (2010)

    CAS  Google Scholar 

  49. Peña, J., Vallet-Regí, M.: Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J Eur Ceram Soc. 23, 1687–1696 (2003)

    Google Scholar 

  50. Enderle, R., Götz-Neunhoeffer, F., Göbbels, M., Müller, F.A., Greil, P.: Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials. 26, 3379–3384 (2005)

    CAS  Google Scholar 

  51. Vallet-Regi, M., Gonzalez-Calbet, J.M.: Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 32, 1–31 (2004)

    CAS  Google Scholar 

  52. Siddharthan, A., Seshadri, S.K., Sampat Kumar, T.S.: Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J. Mater. Sci. Mater. Med. 15, 1279–1284 (2004)

    CAS  Google Scholar 

  53. Gibson, I.R., Bonfield, W.: Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatites. J Mater Sci Mater Med. 13, 685–693 (2002)

    CAS  Google Scholar 

  54. Landi, E., Tampieri, A., Celotti, G., Sprio, S., Sandri, M., Logroscino, G.: Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3, 961–969 (2007)

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge the partial financial support of Ministry of Science and Technology of Taiwan (101-2815-C-166-002-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SC., Hsu, HC., Hsu, SK. et al. Effects of calcination on synthesis of hydroxyapatite derived from oyster shell powders. J Aust Ceram Soc 55, 1051–1058 (2019). https://doi.org/10.1007/s41779-019-00317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00317-7

Keywords

Navigation