Skip to main content
Log in

Synthesis and application of high-permeable zeolite MER membrane for separation of carbon dioxide from methane

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this work, high-permeable zeolite merlinoite (MER) membranes were synthesized for separation of CO2/CH4. The effects of synthesis parameters (temperature, time, and coating number) on permeance and selectivity of synthesized membranes were investigated. The results showed that coating repetition of zeolite layer strongly increased membrane selectivity while decreased permeability for both gasses. Also, it was found that zeolite layers were thickened and larger crystals were formed at higher synthesis temperatures and times. In this research, zeolite MER membranes with reversal tradeoff effect, i.e., simultaneously increased permeability and selectivity, were prepared. The best membrane synthesized in this work showed a CO2/CH4 selectivity of 20.1 and a CO2 permeability of 2.5 × 10−8 mol/m2/s/pa. Due to the upper Robeson’s bound for the separation of CO2/CH4, the selectivities and permeabilities obtained in the current study were related to the points over the upper bounds, while the performance of commercial membranes used to separate CO2 from CH4 reported in the literatures is enclosed in the area below the upper bound. High-permeable zeolite MER membranes with reasonable CO2/CH4 selectivity were successfully synthesized in this work. It found as good choices for the separation of CO2 from CH4 in large-scale separation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mirfendereski, M., Sadrzadeh, M., Mohammadi, T.: Effect of synthesis parameters on single gas permeation through T-type zeolite membranes. Int J Greenh Gas Con. 2, 531–538 (2008)

    Article  Google Scholar 

  2. Rad, M.D., Fatemi, S., Mirfendereski, S.M.: Development of T type zeolite for separation of CO2 from CH4 in adsorption processes. Chem Eng Res Des. 90, 1687–1695 (2012)

    Article  Google Scholar 

  3. Koros, W.J., Mahajan, R.: Pushing the limits on possibilities for large scale gas separation: which strategies. J Membr Sci. 175, 181–396 (2000)

    Article  Google Scholar 

  4. Li, S., Alvarado, G., Noble, R.D., Falconer, J.L.: Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J Membr Sci. 251, 59–66 (2005)

    Article  Google Scholar 

  5. Vu, D.Q., Koros, W.J., Miller, S.J.: Higher pressure CO2/CH4 separation using carbon molecular sieve hollow membranes. Ind Eng Chem Res. 41, 367–380 (2002)

    Article  Google Scholar 

  6. Hasegawa, Y., Kusakabe, K., Morooka, S.: Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube. Chem Eng Sci. 56, 4273–4281 (2001)

    Article  Google Scholar 

  7. Setiawan, H., Khairani, R., Rahman, M.A., Septawendar, R., Mukti, R.R., Dipojono, H.K., Purwasasmita, B.S.: Synthesis of zeolite and γ-alumina nanoparticles as ceramic membranes for desalination applications. J Aust Ceram Soc. 53, 531–538 (2017)

    Article  Google Scholar 

  8. Nagase, T., Kiyozumi, Y., Hasegawa, Y., Inoue, T., Ikeda, T., Mizukami, F.: Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes. Chem Lett. 36, 594–595 (2007)

    Article  Google Scholar 

  9. Inoue, T., Nagase, T., Hasegawa, Y., Kiyozumi, Y., Sato, K., Nishioka, M., Hamakawa, S., Mizukami, F.: Stoichiometric ester condensation reaction processes by pervaporative water removal via acid-tolerant zeolite membranes. Ind Eng Chem Res. 46, 3743–3750 (2007)

    Article  Google Scholar 

  10. Hasegawa, Y., Nagase, T., Kiyozumi, Y., Mizukami, F.: Preparation, characterization, and dehydration performance of MER-type zeolite membranes. J. Sep. Puri. Tech. 73, 25–31 (2010)

    Article  Google Scholar 

  11. Chen, W., Guo, Q., Yang, C., Hou, J.: Preparation of novel functional MER zeolite membrane for potassium continuous extraction from seawater. J Porous Mat. (2017). https://doi.org/10.1007/s10934-017-0435-9

  12. Mirfendereski, M., Mazaheri, T., Sadrzadeh, M., Mohammadi, T.: CO2 and CH4 permeation through T-type zeolite membranes: effect of synthesis parameters and feed pressure. J Sep Puri Tech. 61, 317–323 (2008)

    Article  Google Scholar 

  13. Peng, F., Lu, L., Sun, H., Wang, Y., Liu, J., Jiang, Z.: Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity. Chem Mater. 17, 6790–6796 (2005)

    Article  Google Scholar 

  14. Mirfendereski, M., Mohammadi, T.: Investigation of hydrothermal synthesis parameters on characteristics of T type zeolite crystal structure. Powder Technol. 206, 345–352 (2011)

    Article  Google Scholar 

  15. Maghsoodloorad, H., Mirfendereski, M., Mohammadi, T., Pak, A.: Effects of gel parameters on the synthesis and characteristics of W-type zeolite nanoparticles. Clays Clay Miner. 59, 328–335 (2011)

    Article  Google Scholar 

  16. Mohammadi, T., Maghsoodloorad, H.: Synthesis and characterization of ceramic membranes (W-type zeolite membranes). Int J Appl Ceram Technol. 10, 365–375 (2013)

    Article  Google Scholar 

  17. Mirfendereski, S.M., Daneshpour, R., Mohammadi, T.: Synthesis and characterization of T-type zeolite membrane on a porous mullite tube. Desalination. 200, 77–79 (2006)

    Article  Google Scholar 

  18. Wang, Z., Feng, P., Geng, P., Xu, C., Akhtar, F.: Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method. J Aust Ceram Soc. 53, 287–291 (2017)

    Article  Google Scholar 

  19. Wong, W.C., Au, L.T.Y., Ariso, C.T., Yeung, K.L.: Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci. 191, 143–163 (2001)

    Article  Google Scholar 

  20. Cheng, Y., Li, J.S., Wang, L.J., Sun, X.Y., Liu, X.D.: Synthesis and characterization of Ce-ZSM-5 zeolite membranes. Sep Purif Technol. 51, 210–218 (2006)

    Article  Google Scholar 

  21. Li, S., Falconer, J.L., Noble, R.D.: SAPO-34 membranes for CO2/CH4 separation. J Membr Sci. 241, 121–135 (2004)

    Article  Google Scholar 

  22. Zhang, F., Zheng, Y., Hu, L., Hu, N., Zhu, M., Zhou, R., Chen, X., Kita, H.: Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media. J Membr Sci. 456, 07–116 (2014)

    Article  Google Scholar 

  23. Kato, M., Nakagawa, K., Essaki, K., Maezawa, Y., Takeda, S., Kogo, R., Hagiwara, Y.: Novel CO2 absorbents using lithium-containing oxide. Int J Appl Ceram Technol. 2, 467–475 (2005)

    Article  Google Scholar 

  24. Tawalbeh, M., Tezel, F.H., Letaief, S., Detellier, C., Kruczek, B.: Separation of CO2 and N2 on zeolite silicalate-1 membrane synthesized on novel support. Sep Sci Technol. 47, 1606–1616 (2012)

    Article  Google Scholar 

  25. Tong, Z., Winston Ho, W.S.: Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol. 52, 156–167 (2017)

    Article  Google Scholar 

  26. Robeson, L.M.: The upper bound revisited. J Membr Sci. 320, 390–400 (2008)

    Article  Google Scholar 

  27. Bernardo, P., Drioli, E., Golemme, G.: Membrane gas separation: a review/state of the art. Ind Eng Chem Res. 48, 4638–4663 (2009)

    Article  Google Scholar 

Download references

Funding

This work was supported by the research grants of Shahid Beheshti University G.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mojtaba Mirfendereski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirfendereski, S.M. Synthesis and application of high-permeable zeolite MER membrane for separation of carbon dioxide from methane. J Aust Ceram Soc 55, 103–114 (2019). https://doi.org/10.1007/s41779-018-0216-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0216-1

Keywords

Navigation