Advertisement

Comparison of shear bond strengths between a mica-based glass-ceramic and human dentin using three different resin cements

  • Thapanee Srichumpong
  • Kallaya Suputtamongkol
  • Noparat Thongpun
  • Pimnida Phokhinchatchanan
  • Sukanda Angkulpipat
  • Sahadsaya Prasertwong
  • Giovanni Bolelli
  • Paolo Veronesi
  • Cristina Leonelli
  • Greg Heness
  • Duangrudee Chaysuwan
Research
  • 48 Downloads

Abstract

Three resin cements, RelyX™ Ultimate, Panavia F2.0 and RelyX™ U200, were evaluated for their bond strengths between a mica glass-ceramic and human dentin. This research shows that a self-etch dental cement resin system, Panavia F2.0 provided the best bond strength. The glass-ceramic was produced and phases analysed. Biaxial flexural strength and hardness were measured and found to be comparable to that of human enamel and dentin. Bond strength was measured before and after thermocycling. Thermocycling was found to reduce the bond strength. Thermocycling reduced the shear bond strengths of all adhesives by 50–60%. The two-way ANOVA test was used to analyse the data (p = 0.05). Failure modes were analysed, showing failure predominately at the cement/glass-ceramic and dentin/resin cement interfaces. Failure modes changed after thermocycling. The resin cement bond between the dentin and mica glass-ceramics interfaces was examined for failure by optical microscopy (OM) and scanning electron microscopy (SEM).

Keywords

Mica-based glass-ceramics Machinable Resin cement Shear bond strength Dental materials 

Notes

Acknowledgments

The authors would like to thank the Graduate School, Kasetsart University Research and Development Institute (KURDI) and Faculty of Engineering, Kasetsart University for research funding and a student scholarship, as well as the Faculty of Dentistry, Mahidol University, Bangkok, for providing analytical instruments and workspace.

References

  1. 1.
    Richard, V.N.: All-ceramic restorative: high-strength core ceramics. In: Alison, T., Fiona, C. (eds.) Introduction to dental materials, pp. 205–208. Mosby, Elsevier Inc., London (2013)Google Scholar
  2. 2.
    Rosenblum, M.A., Schulman, A.: A review of all-ceramic restorations. J. Am. Dent. Assoc. 128(3), 297–307 (1997).  https://doi.org/10.14219/jada.archive.1997.0193 CrossRefGoogle Scholar
  3. 3.
    Stephen, R., Martin, L., Junhei, F.: Tooth preparation for all-ceramic restorations. In: John, D., Courtney, S. (eds.) Contemporary fixed prosthodontics, pp. 262–271. Mosby, Elsevier Inc., China (2006)Google Scholar
  4. 4.
    Ozer, A., Soygun, K., Bolayir, G.: The surface and phase analysis studies on dental bioceramics subjected to different mouthrinse solutions. J Aust Ceram Soc. (2018).  https://doi.org/10.1007/s41779-018-0174-7
  5. 5.
    El-Meliegy, E., Noort, R.V.: Machinable Mica dental glass-ceramics. In: El-Meliegy, E., Noort, R.V. (eds.) Glasses and glass ceramics for medical applications, pp. 193–208. Springer, New York (2012)CrossRefGoogle Scholar
  6. 6.
    Bai, J., Chaysuwan, D.: Nucleation, crystallization and characterization of mica-based glass-ceramics with fluorapatite. Adv Mater Res. 936, 164–169 (2014)CrossRefGoogle Scholar
  7. 7.
    Bai, J., Chaysuwan, D.: Development of mica-based glass-ceramic with 4 Mol% of fluorapatite. Adv Mater Res. 1077, 8–13 (2015)Google Scholar
  8. 8.
    Chaysuwan, D., Sirinukunwattana, K., Kanchanatawewat, K., Heness, G., Yamashita, K.: Machinable glass-ceramics forming as a restorative dental material. Dent Mater J. 30(3), 358–367 (2011)CrossRefGoogle Scholar
  9. 9.
    Srichumpong, T., Suputtamongkol, K., Chinpanuwat, W., Nampachoke, P., Bai, J., Angkulpipat, S., Prasertwong, S., Chaysuwan, D.: Effect of heat treatment time on properties of mica-based glass-ceramics for restorative dental materials. Key Eng Mater. 702, 23–27 (2016)CrossRefGoogle Scholar
  10. 10.
    Wei, W., Yong, L., Tan, Y., Grover, L., Guo, Y., Bowei, L.: A mica/nepheline glass-ceramic prepared by melting and powder metallurgy at low temperatures. Mater. Today Commun. 11(Supplement C), 87–93 (2017).  https://doi.org/10.1016/j.mtcomm.2017.02.007 CrossRefGoogle Scholar
  11. 11.
    ISO 6872:2015. Dentistry—ceramic materials. Geneva, Switzerland: International Organization for Standardization. (2015)Google Scholar
  12. 12.
    ASTM C1327-08. Standard test method for Vickers indentation hardness of advanced ceramics. West Conshohocken, PA: American Society for Testing and Materials. (2008)Google Scholar
  13. 13.
    Kim, B.-K., Bae, H.E.-K., Shim, J.-S., Lee, K.-W.: The influence of ceramic surface treatments on the tensile bond strength of composite resin to all-ceramic coping materials. J Prosthet Dent. 94(4), 357–362 (2005).  https://doi.org/10.1016/j.prosdent.2005.08.012 CrossRefGoogle Scholar
  14. 14.
    Nagayassu, M.P., Shintome, L.K., Uemura, E.S., Araujo, J.E.: Effect of surface treatment on the shear bond strength of a resin-based cement to porcelain. Braz Dent J. 17(4), 290–295 (2006)CrossRefGoogle Scholar
  15. 15.
    Holderegger, C., Sailer, I., Schuhmacher, C., Schlapfer, R., Hammerle, C., Fischer, J.: Shear bond strength of resin cements to human dentin. Dent Mater. 24(7), 944–950 (2008).  https://doi.org/10.1016/j.dental.2007.11.021 CrossRefGoogle Scholar
  16. 16.
    Altintas, S., Eldeniz, A.U., Usumez, A.: Shear bond strength of four resin cements used to lute ceramic core material to human dentin. J Prosthodont. 17(8), 634–640 (2008).  https://doi.org/10.1111/j.1532-849X.2008.00348.x CrossRefGoogle Scholar
  17. 17.
    Kumbuloglu, O., Lassila, L.V., User, A., Toksavul, S., Vallittu, P.K.: Shear bond strength of composite resin cements to lithium disilicate ceramics. J Oral Rehabil. 32(2), 128–133 (2005).  https://doi.org/10.1111/j.1365-2842.2004.01400.x CrossRefGoogle Scholar
  18. 18.
    Kanchanavasita, W., Rungnava, P., Mat-Ran, S.: Microtensile bond strength between a lithium disilicateglass-ceramic or a Y-TZP zirconia ceramic bonded to dentin when using two self-etch, self-adhesive resin cements compared with an adhesive resin cement. Mahidol. Dent. J. 33(2), 65–72 (2013)Google Scholar
  19. 19.
    Denry, I.L., Holloway, J.A., Nakkula, R.J., Walters, J.D.: Effect of niobium content on the microstructure and thermal properties of fluorapatite glass-ceramics. J. Biomed. Mater. Res. B. Appl. Biomater. 75(1), 18–24 (2005).  https://doi.org/10.1002/jbm.b.30295 CrossRefGoogle Scholar
  20. 20.
    Chun, K.J., Choi, H.H., Lee, J.Y.: Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech. 5, 1–5 (2014).  https://doi.org/10.1177/1758736014520809 Google Scholar
  21. 21.
    Chen, H., Liu, Y.: Chapter 2 - teeth. In: James, Z.S., Tomaž, K. (eds.) Advanced ceramics for dentistry, pp. 5–21. Butterworth-Heinemann, Oxford (2014)CrossRefGoogle Scholar
  22. 22.
    Carvalho, A.O., Ayres, A.P., de Almeida, L.C., Briso, A.L., Rueggeberg, F.A., Giannini, M.: Effect of peroxide bleaching on the biaxial flexural strength and modulus of bovine dentin. Eur. J. Dent. 9(2), 246–250 (2015).  https://doi.org/10.4103/1305-7456.156845 CrossRefGoogle Scholar
  23. 23.
    Blatz, M.B., Sadan, A., Arch, G.H., Lang, B.R.: In vitro evaluation of long-term bonding of Procera AllCeram alumina restorations with a modified resin luting agent. J Prosthet Dent. 89(4), 381–387 (2003).  https://doi.org/10.1067/mpr.2003.89 CrossRefGoogle Scholar
  24. 24.
    Ozcan, M., Kerkdijk, S., Valandro, L.F.: Comparison of resin cement adhesion to Y-TZP ceramic following manufacturers’ instructions of the cements only. Clin Oral Investig. 12(3), 279–282 (2008).  https://doi.org/10.1007/s00784-007-0151-y CrossRefGoogle Scholar
  25. 25.
    Özcan, M., Mese, A.: Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin. Clin Oral Investig. 16(4), 1081–1088 (2012).  https://doi.org/10.1007/s00784-011-0594-z CrossRefGoogle Scholar
  26. 26.
    Gürol, O., Funda, Y., Dilek, T., Nuran, O., Mustafa, O.: Shear bond strength of composite resin cements to ceramics. J. Marmara Univ. Dent. Fac. 2, 61–66 (2013)Google Scholar
  27. 27.
    Sirimongkolwattana, S., Phanpaisan, P., Jittidecharaks, S., Tagami, J.: Bond strength between self-adhesive cement and dentin using self-etch bonding. CM Dent. J. 36(2), 81–88 (2015)Google Scholar
  28. 28.
    Lee, S.-E., Bae, J.-H., Choi, J.-W., Jeon, Y.-C., Jeong, C.-M., Yoon, M.-J., Huh, J.-B.: Comparative shear-bond strength of six dental self-adhesive resin cements to zirconia. Materials. 8(6), 3306–3315 (2015).  https://doi.org/10.3390/ma8063306 CrossRefGoogle Scholar
  29. 29.
    Secilmis, A., Ustun, O., Kecik Buyukhatipoglu, I.: Evaluation of the shear bond strength of two resin cements on different CAD/CAM materials. J Adhes Sci Technol. 30(9), 983–993 (2016).  https://doi.org/10.1080/01694243.2015.1134866 CrossRefGoogle Scholar
  30. 30.
    Chen, C., He, F., Burrow, M., Xie, H., Zhu, Y., Zhang, F.: Bond strengths of two self-adhesive resin cements to dentin with different treatments. J. Med. Biol. Eng. 31, 73–77 (2011).  https://doi.org/10.5405/jmbe.681 CrossRefGoogle Scholar
  31. 31.
    Stawarczyk, B., Hartmann, R., Hartmann, L., Roos, M., Ozcan, M., Sailer, I., Hammerle, C.H.: The effect of dentin desensitizer on shear bond strength of conventional and self-adhesive resin luting cements after aging. Oper Dent. 36(5), 492–501 (2011).  https://doi.org/10.2341/10-292-l CrossRefGoogle Scholar
  32. 32.
    Henriques, B., Gonçalves, S., Soares, D., Silva, F.S.: Shear bond strength comparison between conventional porcelain fused to metal and new functionally graded dental restorations after thermal–mechanical cycling. J. Mech. Behav. Biomed. Mater. 13(Supplement C), 194–205 (2012).  https://doi.org/10.1016/j.jmbbm.2012.06.002 CrossRefGoogle Scholar
  33. 33.
    Amornporncharoen, M., N, A., Sirimongkolwa, S.: Surface treatment of all-ceramic crown. CM Dent. J. 30, 15–22 (2009)Google Scholar
  34. 34.
    Jain, G., Narad, A., Boruah, L.C., Rajkumar, B.: Comparative evaluation of shear bond strength of three resin based dual-cure core build-up materials: an in-vitro study. J Conserv Dent. 18(4), 337–341 (2015).  https://doi.org/10.4103/0972-0707.159754 CrossRefGoogle Scholar
  35. 35.
    Rodrigues, R.F., Ramos, C.M., Francisconi, P.A.S., Borges, A.F.S.: The shear bond strength of self-adhesive resin cements to dentin and enamel: an in vitro study. J Prosthet Dent. 113(3), 220–227 (2015).  https://doi.org/10.1016/j.prosdent.2014.08.008 CrossRefGoogle Scholar
  36. 36.
    Hiraishi, N., Yiu, C.K., King, N.M., Tay, F.R.: Effect of pulpal pressure on the microtensile bond strength of luting resin cements to human dentin. Dent Mater. 25(1), 58–66 (2009).  https://doi.org/10.1016/j.dental.2008.05.005 CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  • Thapanee Srichumpong
    • 1
  • Kallaya Suputtamongkol
    • 2
  • Noparat Thongpun
    • 2
  • Pimnida Phokhinchatchanan
    • 2
  • Sukanda Angkulpipat
    • 1
  • Sahadsaya Prasertwong
    • 1
  • Giovanni Bolelli
    • 3
  • Paolo Veronesi
    • 3
  • Cristina Leonelli
    • 3
  • Greg Heness
    • 1
    • 4
  • Duangrudee Chaysuwan
    • 1
  1. 1.Department of Materials Engineering, Faculty of EngineeringKasetsart UniversityBangkokThailand
  2. 2.Department of Prosthodontics, Faculty of DentistryMahidol UniversityBangkokThailand
  3. 3.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly
  4. 4.Faculty of ScienceUniversity of Technology SydneyUltimoAustralia

Personalised recommendations