Advertisement

Hydrogel-assisted low-temperature synthesis of calcium borate nanoparticles

  • Mazeyar Parvinzadeh Gashti
  • Atefeh Shokri
Research
  • 50 Downloads

Abstract

In recent years, synthesis of inorganic/organic hybrid nanocomposites with the aid of biomaterials has gained much attention due to their biocompatibility, inexpensiveness, and versatility. In this paper, we utilized a novel approach for synthesis of calcium borate nanoparticles at ambient temperature based on the diffusion of calcium and borate ions in gelatin hydrogel. Different properties of particles were evaluated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and X-ray diffraction (XRD). FTIR spectra of particles showed gelatin inclusion in the particle indicative by CH2 stretching, CH2 bending, and gelatin functional group vibrations. The electrostatic interactions between gelatin macromolecules and calcium borate crystals were also proved by HyperChem 8 modeling software. SEM illustrated that the particle morphology depended on the gelatin pH. XRD revealed the presence of crystalline CaB2O4 phase in the nanocomposite particles. Our research stated that gelatin is a useful biopolymer for synthesis and precipitation of calcium borate at ambient temperature. Hence, we propose our particles as promising materials for use in different engineering applications.

Keywords

Calcium borate Gelatin Gel diffusion XRD 

Notes

Funding information

The study was financially supported by the Yadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.

References

  1. 1.
    Burgener, M., Putzeys, T., Parvinzadeh Gashti, M., Busch, S., Aboulfadl, H., Wubbenhorst, M., Kniep, R., Hulliger, J.: Polar Nature of Biomimetic Fluorapatite/Gelatin Composites: A Comparison of Bipolar Objects and the Polar State of Natural Tissue. Biomacromolecules. 16, 2814 (2015)CrossRefGoogle Scholar
  2. 2.
    Dorozhkin, S.V.: Bioceramics of calcium orthophosphates. Biomaterials. 31, 1465 (2010)CrossRefGoogle Scholar
  3. 3.
    Meldrum, F.C., Cölfen, H.: Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332 (2008)CrossRefGoogle Scholar
  4. 4.
    Parvinzadeh Gashti, M., Hegemann, D., Stir, M., Hulliger, J.: Thin Film Plasma Functionalization of Polyethylene Terephthalate to Induce Bone-Like Hydroxyapatite Nanocrystals. Plasma Process. Polym. 11, 37 (2014)CrossRefGoogle Scholar
  5. 5.
    Schweizer, S., Taubert, A.: Polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution. Macromol. Biosci. 7, 1085 (2007)CrossRefGoogle Scholar
  6. 6.
    Gorna, K., Muñoz-Espí, R., Gröhn, F., Wegner, G.: Bioinspired mineralization of inorganics from aqueous media controlled by synthetic polymers. Macromol. Biosci. 7, 163 (2007)CrossRefGoogle Scholar
  7. 7.
    Parvinzadeh Gashti, M., Bourquin, M., Stir, M., Hulliger, J.: Glutamic acid inducing kidney stone biomimicry by a brushite/gelatin composite. J. Mater. Chem. B. 1, 1501 (2013)CrossRefGoogle Scholar
  8. 8.
    Parvinzadeh Gashti, M., Burgener, M., Stir, M., Hulliger, J.: Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties. J. Colloid Interface Sci. 431, 149 (2014)CrossRefGoogle Scholar
  9. 9.
    Parvinzadeh Gashti, M., Bourquin, M., Stir, M., Hulliger, J.: Mineralization of Calcium Phosphate Crystals in Starch Template Inducing a Brushite Kidney Stone Biomimetic Composite, Cryst. Cryst. Growth Des. 13, 2166 (2013)CrossRefGoogle Scholar
  10. 10.
    Parvinzadeh Gashti, M., Stir, M., Hulliger, J.: Synthesis of bone-like micro-porous calcium phosphate/iota-carrageenan composites by gel diffusion. Colloids Surf. B. 110, 426 (2013)CrossRefGoogle Scholar
  11. 11.
    Schubert, D.M.: Borates in industrial use, structure and bonding, p. 5. Springer-Verlag, Heidelberg (2003)Google Scholar
  12. 12.
    Lavın, V., Rodrıguez-Mendoza, U.R., Martın, I.R., Rodrıguez, V.D.: Optical spectroscopy analysis of the Eu3+ ions local structure in calcium diborate glasses. J. Non-Cryst. Solid. 319, 200 (2003)Google Scholar
  13. 13.
    Jia, W.T., Zhang, X., Luo, S.H., Liu, X., Huang, W.H., Rahaman, M.N., Day, D.E., Zhang, C.Q., Xie, Z.P., Wang, J.Q.: Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 6, 812 (2010)CrossRefGoogle Scholar
  14. 14.
    Miura, K., Kimura, N., Suzuki, H., Miyashita, Y., Nishio, Y.: Thermal and Viscoelastic Properties of Alginate/Poly(vinyl alcohol) Blends Cross-Linked with Calcium Tetraborate, Carbohydr. Carbohydr. Polym. 39, 139 (1999)CrossRefGoogle Scholar
  15. 15.
    Ishii, T., Kokaku, H., Nagai, A., Nishita, T., Kakimoto, M.: Calcium borate flame retardation system for epoxy molding compounds. Polym. Eng. Sci. 46, 799 (2006)CrossRefGoogle Scholar
  16. 16.
    Jia, Z., Pang, X., Li, H., Ni, J., Shao, X.: Synthesis and wear behavior of oleic acid capped calcium borate/graphene oxide composites. Tribol. Int. 90, 240 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhu, W., Zhang, X., Wang, X., Zhang, H., Zhang, Q., Xiang, L.: Short belt-like Ca2B2O5· H2O nanostructures: Hydrothermal formation, FT-IR, thermal decomposition, and optical properties. J. Cryst. Growth. 332, 81 (2011)CrossRefGoogle Scholar
  18. 18.
    Erfani Haghiri, M., Saion, E., Soltani, N., wan Abdullah, W.S., Navasery, M., Hashim, M.: Thermoluminescence characteristics of copper activated calcium borate nanocrystals (CaB4O7: Cu). J. Lumin. 141, 177 (2013)CrossRefGoogle Scholar
  19. 19.
    Erfani Haghiri, M., Saion, E., Soltani, N., wan Abdullah, W.S., Navasery, M., Rezaee Ebrahim Saraee, K., Deyhimi, N.: Thermoluminescent dosimetry properties of double doped calcium tetraborate (CaB4O7: Cu–Mn) nanophosphor exposed to gamma radiation. J. Alloys Comp. 582, 392 (2014)CrossRefGoogle Scholar
  20. 20.
    Rojas, S.S., Yukimitu, K., de Camargo, A.S.S., Nunes, L.A.O., Hernandes, A.C.: Undoped and calcium doped borate glass system for thermoluminescent dosimeter J. Non-Cryst. Solid. 352, 3608 (2006)CrossRefGoogle Scholar
  21. 21.
    Manupriya, Thind, K.S., Sharma, G., Rajendran, V., Singh, K., Gayathri Devi, A.V., Aravindan, S.: Structural and acoustic investigations of calcium borate glasses. Phys. Status Solidi (a). 203, 2356 (2006)CrossRefGoogle Scholar
  22. 22.
    Rojas, S.S., Yukimitu, K., Hernandes, A.C.: Dosimetric properties of UV irradiated calcium co-doped borate glass–ceramic Nucl. Instr. Meth. Phys. Res. B. 266, 653 (2008)CrossRefGoogle Scholar
  23. 23.
    Manupriya, Thind, K.S., Singh, K., Kumar, V., Sharma, G., Singh, D.P., Singh, D.: Compositional dependence of in-vitro bioactivity in sodium calcium borate glasses J. Phys. Chem. Solids. 70, 1137 (2009)CrossRefGoogle Scholar
  24. 24.
    Singh, K., Bala, I., Kumar, V.: Structural optical and bioactive properties of calcium borosilicate glasses. Ceram. Int. 35, 3401 (2009)CrossRefGoogle Scholar
  25. 25.
    Abdelghany, A.M.: Novel method for early investigation of bioactivity in different borate bio-glasses Spectrochim. Acta Part A. 100, 120 (2013)CrossRefGoogle Scholar
  26. 26.
    Wu, Y., Liu, J., Fu, P., Wang, J., Zhou, H., Wang, G., Chen, C.: A New Lanthanum and Calcium Borate La2CaB10O19 Chem. Mater. 13, 753 (2001)CrossRefGoogle Scholar
  27. 27.
    Chen, X., Li, M., Chang, X., Zang, H., Xiao, W.: Synthesis and crystal structure of a new calcium borate, CaB6O10. J. Alloy. Comp. 464, 332 (2008)CrossRefGoogle Scholar
  28. 28.
    Huang, Y., Han, S., Liu, S., Wang, Y., Li, J.: Preparation and tribological properties of surface-modified calcium borate nanoparticles as additive in lubricating oil. Ind. Lubr. Tribol. 66, 143 (2014)CrossRefGoogle Scholar
  29. 29.
    Gioffrè, M., Torricelli, P., Panzavolta, S., Rubini, K., Bigi, A.: Chitosan and gelatin as engineered dressing for wound repair. J. Bioact. Compat. Polym. 27, 67 (2012)CrossRefGoogle Scholar
  30. 30.
    Parvinzadeh Gashti, M., Stir, M., Hulliger, J.: Growth of strontium hydrogen phosphate/gelatin composites: a biomimetic approach. New J. Chem. 40, 5495 (2016)CrossRefGoogle Scholar
  31. 31.
    Parvinzadeh Gashti, M., Helali, M., Karimi, S.: Biomineralization-inspired green. synthesis of zinc phosphate-based nanosheets in gelatin hydrogel. Int. J. Appl. Ceram. Technol. 13, 1069 (2016)CrossRefGoogle Scholar
  32. 32.
    Chen, J.M., Kung, C.E., Feairheller, S.H., Brown, E.M.: An energetic evaluation of a “Smith” collagen microfibril model. J. Protein Chem. 10, 535 (1991)CrossRefGoogle Scholar
  33. 33.
    Tlatlik, H., Simon, P., Kawska, A., Zahn, D., Kniep, R.: Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. Angew Chem. Int. Ed. 45, 1905 (2006)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2018

Authors and Affiliations

  1. 1.Department of Textile, College of EngineeringYadegar-e-Imam Khomeini (RAH) Branch, Islamic Azad UniversityTehranIran

Personalised recommendations