Skip to main content
Log in

Processing of layered porous mullite ceramics

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In the current study, layered porous mullite ceramics with different pore sizes were produced via polymeric sponge method by using CC31 commercial-grade kaolin as starting raw material. Polyurethane sponges with three different pore sizes (10, 20, and 30 ppi) changing from coarse to fine pores were physically assembled and then prepared ceramic slurry was impregnated into this structure to achieve the designed layered porous structure. After drying the polymeric sponges impregnated with the slurry, binder burnout and sintering studies were carried out. Phase composition and microstructure evolution of the porous samples, sintered at 1300°-1600°C for 1 and 3 h dwell time at a 3°C/minute constant heating rate, were investigated. In situ mullite phase formation was achieved at all sintering conditions. It was determined that mullite grain morphology development strongly depends on the sintering temperature and time. Sintering at 1300 °C for 1 h resulted in the formation of equiaxed mullite grains. When the sintering temperature was increased to 1400 °C, first elongated fine mullite grains were achieved. Increasing dwell time at this temperature from 1 to 3 h resulted in more elongated mullite grain development. It was observed that aspect ratio of the mullite grains was significantly increased when the sintering temperature was increased to 1500 and 1600 °C. Scanning electron microscopy investigations demonstrated that the mullite needles do not reveal a significant preferred orientation and all porous mullite samples have uniform microstructure. It was determined that highly porous (60–70%) and light weight (0.7–1.1 g cm−3) layered mullite ceramics were fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aksay, I.A., Dabbs, D.M., Sarikaya, M.: Mullite for structural, electronic, and optical applications. J Am Ceram Soc. 74(10), 2343–2358 (1991)

    Article  Google Scholar 

  2. Chen, C.Y., Lan, G.S., Tuan, W.H.: Microstructural evolution of mullite during the sintering of kaolin powder compacts. Ceram Int. 26(7), 715–720 (2000)

    Article  Google Scholar 

  3. Carlesso, M., Giacomelli, R., Krause, T., Molotnikov, A., Koch, D., Kroll, S., Tushtev, K., Estrin, Y., Rezwan, K.: Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks. J Eur Ceram Soc. 33(13–14), 2549–2558 (2013)

    Article  Google Scholar 

  4. Kalemtas, A., Topates, G., Ozcoban, H., Mandal, H., Kara, F., Janssen, R.: Mechanical characterization of highly porous beta-Si3N4 ceramics fabricated via partial sintering & starch addition. J Eur Ceram Soc. 33(9), 1507–1515 (2013)

    Article  Google Scholar 

  5. Wan, T., Yao, D., Yin, J., Xia, Y., Zuo, K., Zeng, Y.: The microstructure and mechanical properties of porous silicon nitride ceramics prepared via novel aqueous gelcasting. Int J Appl Ceram Technol. 12(5), 932–938 (2015)

    Article  Google Scholar 

  6. Yang, X., Li, B., Zhang, C., Wang, S., Liu, K., Zou, C.: Design and fabrication of porous Si 3 N 4-Si 2 N 2 O in situ composite ceramics with improved toughness. Mater Des. 110, 375–381 (2016)

    Article  Google Scholar 

  7. Wang, Q., Li, Y., Li, S., Xiang, R., Xu, N., OuYang, S.: Effects of critical particle size on properties and microstructure of porous purging materials. Mater Lett. 197, 48–51 (2017)

    Article  Google Scholar 

  8. Powell, S., Evans, J.: The structure of ceramic foams prepared from polyurethane-ceramic suspensions. Mater Manuf Process. 10(4), 757–771 (1995)

    Article  Google Scholar 

  9. Topates, G., Mammitzsch, L., Petasch, U., Adler, J., Kara, F., Mandal, H.: Microstructure–permeability relation of porous β-Si 3 N 4 ceramics. J Eur Ceram Soc. 33(9), 1545–1551 (2013)

    Article  Google Scholar 

  10. Moreira, E., Innocentini, M., Coury, J.: Permeability of ceramic foams to compressible and incompressible flow. J Eur Ceram Soc. 24(10), 3209–3218 (2004)

    Article  Google Scholar 

  11. Akpinar, S., Kusoglu, I.M., Ertugrul, O., Onel, K.: Silicon carbide particle reinforced mullite composite foams. Ceram Int. 38(8), 6163–6169 (2012)

    Article  Google Scholar 

  12. Liang, X., Li, Y.W., Liu, J., Sang, S.B., Chen, Y.Y., Li, B.W., Aneziris, C.G.: Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion. Ceram Int. 42(11), 13091–13097 (2016)

    Article  Google Scholar 

  13. Akpinar, S., Altun, I.A., Onel, K.: Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics. J Eur Ceram Soc. 30(13), 2727–2734 (2010)

    Article  Google Scholar 

  14. Hong, C., Du, J., Liang, J., Zhang, X., Han, J.: Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceram Int. 37(8), 3717–3722 (2011)

    Article  Google Scholar 

  15. Maca, K., Dobsak, P., Boccaccini, A.: Fabrication of graded porous ceramics using alumina–carbon powder mixtures. Ceram Int. 27(5), 577–584 (2001)

    Article  Google Scholar 

  16. Kinemuchi, Y., Watari, K., Uchimura, S.: Grading porous ceramics by centrifugal sintering. Acta Mater. 51(11), 3225–3231 (2003)

    Article  Google Scholar 

  17. Chen, F., Shen, Q., Zhang, L.: Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res. 105, 445–461 (2010)

    Article  Google Scholar 

  18. Shan, H., Wang, X., Shi, F., Yan, J., Yu, J., Ding, B.: Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl Mater Interfaces. (2017)

  19. Barg, S., Koch, D., Grathwohl, G.: Processing and properties of graded ceramic filters. J Am Ceram Soc. 92(12), 2854–2860 (2009)

    Article  Google Scholar 

  20. Darcovich, K., Cloutier, C.R.: Processing of functionally gradient ceramic membrane substrates for enhanced porosity. J Am Ceram Soc. 82(8), 2073–2079 (1999)

    Article  Google Scholar 

  21. Steffens, H.-D., Babiak, Z., Gramlich, M.: Some aspects of thick thermal barrier coating lifetime prolongation. J Therm Spray Technol. 8(4), 517–522 (1999)

    Article  Google Scholar 

  22. Pasco WD, Klug FJ (1980) Method for making porous, crushable core having a porous integral outer barrier layer having a density gradient therein, Google Patents

  23. Greskovich CD, Klug FJ, Pasco WD (1980) Process for making a ceramic article having a dense integral outer barrier layer and a high degree of porosity and crushability characteristics, Google Patents

  24. Greil, P., Lifka, T., Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J Eur Ceram Soc. 18(14), 1975–1983 (1998)

    Article  Google Scholar 

  25. Satyamurthy, K., Singh, J., Kamat, M., Hasselman, D.: Effect of spatially varying porosity on magnitude of thermal stress during steady-state heat flow. J Am Ceram Soc. 62(7–8), 431–432 (1979)

    Article  Google Scholar 

  26. Boccaccini, A., Janczak, J., Taplin, D., Köpf, M.: The multibarriers-system as a materials science approach for industrial waste disposal and recycling: application of gradient and multilayered microstructures. Environ Technol. 17(11), 1193–1203 (1996)

    Article  Google Scholar 

  27. Tampieri, A., Celotti, G., Sprio, S., Delcogliano, A., Franzese, S.: Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials. 22(11), 1365–1370 (2001)

    Article  Google Scholar 

  28. Colombo, P., Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater Res Innov. 6(5–6), 260–272 (2002)

    Article  Google Scholar 

  29. Werner, J., Lathe, C., Greil, P., Frieß, W.: Pore-graded hydroxyapatite materials for implantation, pp. 509–510. British Ceramic Proceedings, UK (1999)

    Google Scholar 

  30. Sooksaen, P., Karawatthanaworrakul, S.: The properties of Southern Thailand clay-based porous ceramics fabricated from different pore size templates. Appl Clay Sci. 104, 295–302 (2015)

    Article  Google Scholar 

  31. Werner, J., Linner-Krčmar, B., Friess, W., Greil, P.: Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure. Biomaterials. 23(21), 4285–4294 (2002)

    Article  Google Scholar 

  32. Aksel, C., Kalemtas, A.: Investigation of parameters affecting formation of mullite from kaolin. Key Eng Mater. 264-268, 117–120 (2004)

    Article  Google Scholar 

  33. Sonuparlak, B., Sarikaya, M., Aksay, I.A.: Spinel phase formation during the 980-degrees-C exothermic reaction in the kaolinite-to-mullite reaction-series. J Am Ceram Soc. 70(11), 837–842 (1987)

    Article  Google Scholar 

  34. Aksay, I.A., Sarikaya, M., Sonupariak, B.: Spinel phase formation during 980-degrees-C exothermic reaction in the kaolinite-to-mullite-reaction series—reply. J Am Ceram Soc. 72(8), 1571–1571 (1989)

    Article  Google Scholar 

  35. Chakraborty, A.K., Ghosh, D.K.: Comment on spinel phase formation during 980-degrees-C exothermic reaction in the kaolinite-to-mullite reaction-series. J Am Ceram Soc. 72(8), 1569–1570 (1989)

    Article  Google Scholar 

  36. Chakravorty, A.K., Ghosh, D.K.: Kaolinite mullite reaction-series—the development and significance of a binary aluminosilicate phase. J Am Ceram Soc. 74(6), 1401–1406 (1991)

    Article  Google Scholar 

  37. Papargyris, A.D., Cooke, R.D.: Structure and mechanical properties of kaolin based ceramics. Br Ceram Trans. 95(3), 107–120 (1996)

    Google Scholar 

  38. Lee, S., Kim, Y.J., Moon, H.S.: Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. J Am Ceram Soc. 82(10), 2841–2848 (1999)

    Article  Google Scholar 

  39. Srikrishna, K., Thomas, G., Martinez, R., Corral, M.P., Deaza, S., Moya, J.S.: Kaolinite mullite reaction-series—a TEM study. J Mater Sci. 25(1b), 607–612 (1990)

    Article  Google Scholar 

  40. Slade, R.C.T., Davies, T.W.: Evolution of structural-changes during flash calcination of kaolinite—a Si-29 and Al-27 nuclear-magnetic-resonance spectroscopy study. J Mater Chem. 1(3), 361–364 (1991)

    Article  Google Scholar 

  41. Liu, K.C., Thomas, G., Caballero, A., Moya, J.S., Deaza, S.: Time-temperature transformation curves for kaolinite alpha-alumina. J Am Ceram Soc. 77(6), 1545–1552 (1994)

    Article  Google Scholar 

  42. Gualtieri, A., Bellotto, M., Artioli, G., Clark, S.M.: Kinetic-study of the kaolinite-mullite reaction sequence. 2. Mullite formation. Phys Chem Miner. 22(4), 215–222 (1995)

    Article  Google Scholar 

  43. Bellotto, M., Gualtieri, A., Artioli, G., Clark, S.M.: Kinetic-study of the kaolinite-mullite reaction sequence. 1. Kaolinite dehydroxylation. Phys Chem Miner. 22(4), 207–214 (1995)

    Article  Google Scholar 

  44. Koç, S., Toplan, N., Yildiz, K., Toplan, H.Ö.: Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 103(3), 791–796 (2011)

    Article  Google Scholar 

  45. Elmas, E., Yildiz, K., Toplan, N., Toplan, H.Ö.: The non-isothermal kinetics of mullite formation in mechanically activated kaolinite–alumina ceramic system. J Therm Anal Calorim. 108(3), 1201–1206 (2012)

    Article  Google Scholar 

  46. Yürüyen, S., Toplan, N., Yildiz, K., Toplan, H.Ö.: The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system. J Therm Anal Calorim. 125(2), 803–808 (2016)

    Article  Google Scholar 

  47. KUANG, J., Lin, L., Pengfei, L., Weiquan, Y., Jin, H., Tingsheng, Q.: Effect of Er 2 O 3 and Pr 6 O 11 on non-isothermal kinetics of mullite formation from kaolinite. J Rare Earths. 35(8), 831–836 (2017)

    Article  Google Scholar 

  48. Zhang, C., Zhang, Z., Tan, Y., Zhong, M.: The effect of citric acid on the kaolin activation and mullite formation. Ceram Int. 43(1, 1466–1471 (2017)

    Article  Google Scholar 

  49. Chakraborty, A., Ghosh, D.: Reexamination of the kaolinite-to-mullite reaction series. J Am Ceram Soc. 61(3–4), 170–173 (1978)

    Article  Google Scholar 

  50. Chen, Y.F., Wang, M.C., Hon, M.H.: Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 24(8), 2389–2397 (2004)

    Article  Google Scholar 

  51. Castelein, O., Soulestin, B., Bonnet, J.P., Blanchart, P.: The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 27(5), 517–522 (2001)

    Article  Google Scholar 

  52. Oyamada, R.: The mechanism of mullite formation in low-grade kaolin at low-temperatures. Denki Kagaku. 49(5), 286–292 (1981)

    Google Scholar 

  53. Sahraoui, T., Belhouchet, H., Heraiz, M., Brihi, N., Guermat, A.: The effects of mechanical activation on the sintering of mullite produced from kaolin and aluminum powder. Ceram Int. 42(10), 12185–12193 (2016)

    Article  Google Scholar 

  54. Fahad, M., Farid, U., Iqbal, Y.: Phase and microstructural evolution, and densification behaviour of kaolin powder compacts. Trans Indian Ceram Sci. 75(1), 47–52 (2016)

    Article  Google Scholar 

  55. Zibouche, F., Kerrioudj, H., Mohamed, T.A.: Structural characterization of mullite formed from heated kaolin of Tamazert deposit (Algeria). Asian J Chem. 24(3), 1118–1124 (2012)

    Google Scholar 

  56. Zhou, J.E., Zhang, X.Z., Zhang, J., Wang, Y.Q., Zhao, S.K., Cai, X.E.: Influence of clay materials on acicular mullite porous ceramic. Chin Ceram Commun II. 412, 344–347 (2012)

    Google Scholar 

  57. Wang, H.Y., Li, C.S., Peng, Z.J., Zhang, S.J.: Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 105(1), 157–160 (2011)

    Article  Google Scholar 

  58. Agathopoulos, S., Fernandes, H.R., Tulyaganov, D., Ferreira, J.M.F.: Preparation of mullite whiskers from kaolinite using CuSO4 as fluxing agent. Adv Mater Forum II. 455-456, 818–821 (2004)

    Article  Google Scholar 

  59. Kawai, S., Yoshida, M., Hashizume, G.: Preparation of mullite from kaolin by dry-grinding. Nippon Seramikkusu Kyokai Gakujutsu. 98(7), 669–674 (1990)

    Article  Google Scholar 

  60. Okada, K., Otsuka, N., Somiya, S.: Review of mullite synthesis routes in Japan. Am Ceram Soc Bull. 70(10), 1633–1640 (1991)

    Google Scholar 

  61. Perezmaqueda, L.A., Perezrodriguez, J.L., Scheiffele, G.W., Justo, A., Sanchezsoto, P.J.: Thermal-analysis of ground kaolinite and pyrophyllite. J Therm Anal Calorim. 39(8–9), 1055–1067 (1993)

    Google Scholar 

  62. Chakraborty, A.K.: Supplementary alkali extraction studies of 980-degrees-C-heated kaolinite by X-ray-diffraction analysis. J Mater Sci. 27(8), 2075–2082 (1992)

    Article  Google Scholar 

  63. Chakraborty, A.K.: Resolution of thermal peaks of kaolinite in thermomechanical analysis and differential thermal-analysis studies. J Am Ceram Soc. 75(7), 2013–2016 (1992)

    Article  Google Scholar 

  64. Pask, J.A., Tomsia, A.P.: Formation of mullite from sol-gel mixtures and kaolinite. J Am Ceram Soc. 74(10), 2367–2373 (1991)

    Article  Google Scholar 

  65. Chakraborty, A.K.: Phase Transformation of Kaolinite Clay. Springer, New Delhi (2014)

  66. Chabinsky, I.J.: Applications of microwave energy past, present and future “brave new worlds”. MRS Online Proc Libr Arch. 124, 17 (1988) (13 pages)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Zschimmer & Schwarz, Lahnstein, Germany for providing the Dolapix CE–64 deflocculant.

Funding

This project has been supported by the Foundation for Scientific Research Projects of Bursa Technical University (Project Number: 2016–02–005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Kalemtaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalemtaş, A., Özey, N. & Aytekin Aydin, M.T. Processing of layered porous mullite ceramics. J Aust Ceram Soc 54, 545–555 (2018). https://doi.org/10.1007/s41779-018-0183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0183-6

Keywords

Navigation