Skip to main content

In situ synthesis–sintering of YAG/MAS composites by reactive spark plasma sintering


In this work, Y3Al5O12/magnesium aluminate spinel composites were successfully in situ synthesized and sintered by the reactive spark plasma sintering (RSPS) method. The effect of the SPS temperature on the synthesized phases and microstructure was investigated by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed that the in situ reactions occurred at 1000 to 1300 °C during RSPS. The maximum density (4 g/cm3) and hardness (19.7 GPa) were obtained for the composition which was consolidated at 1300 °C for 10 min.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Shuqiang Wang, T.A., Tanabe, Y., Yasuda, E.: Phase compositions and microstructural characteristics of solidifed Al2O3-rich spinel solid solution/YAG composite. J Eur Ceram Soc. 20, 39–43 (2000)

    Article  Google Scholar 

  2. Wang, S., et al.: Eutectic precipitation in a solidified Y3Al5O12-MgAl2O4 composite. J Mater Sci Lett. 18(16), 1325–1327 (1999)

    Article  Google Scholar 

  3. Tai-Il Mah, K.A.K., Sambasivan, S., Kerans, R.J.: High-temperature environmental stability of the compounds in the Al2O3–Y2O3 system. J Am Ceram Soc. 80(4), 874–878 (1997)

    Google Scholar 

  4. Abalı, S.: Effect of growth rate on the microstructure and mechanical behavior of directionally solidified Y3Al5O12/MgAl2O4 eutectics. J Cryst Growth. 391, 18–24 (2014)

    Article  Google Scholar 

  5. Abali, S.: Microstructural stability and creep behavior of directionally solidified MgAl2O4/Y3Al5O12 eutectic composite. Appl Mech Mater. 752-753, 189–193 (2015)

    Article  Google Scholar 

  6. Wang, S., et al.: Divorced eutectic and interface characteristics in a solidified YAG-spinel composite with spinel-rich composition. J Mater Sci. 35(11), 2757–2761 (2000)

    Article  Google Scholar 

  7. Abali, S.: Residual stress effects on fatigue crack growth in directionally solidified YAG/spinel eutectics. Appl Mech Mater. 752-753, 263–267 (2015)

    Article  Google Scholar 

  8. Sarkar, R., Das, S.K., Banerjee, G.: Effect of additives on the densification of reaction sintered and presynthesised spinels. Ceram Int. 29(1), 55–59 (2003)

    Article  Google Scholar 

  9. Stevenson, A.J., et al.: Effect of SiO2 on densification and microstructure development in Nd: YAG transparent ceramics. J Am Ceram Soc. 94(5), 1380–1387 (2011)

    Article  Google Scholar 

  10. Satapathy, L.: Effect of cobalt oxide on the densification of yttrium aluminum garnet. Mater Lett. 59(2), 387–390 (2005)

    Article  Google Scholar 

  11. Liu, Q., et al.: Solid-state reactive sintering of YAG transparent ceramics for optical applications. J Alloys Compd. 616, 81–88 (2014)

    Article  Google Scholar 

  12. Munir, Z., Anselmi-Tamburini, U., Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci. 41(3), 763–777 (2006)

    Article  Google Scholar 

  13. Tokita, M., Spark plasma sintering (SPS) method, systems, and applications. Handbook of Advanced Ceramics, 2013: p. 1149–1177

  14. Ben-Haroush, M., Dikovsky, G., Kalabukhov, S., Aizenshtein, M., Hayun, S.: Spark plasma sintering of MgO-strengthened aluminum. J Mater Eng and Perform. 25, 648 (2016).

    Article  Google Scholar 

  15. Guillon, O., et al.: Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater. 16(7), 830–849 (2014)

    Article  Google Scholar 

  16. Suarez, M., et al., Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. 2013

  17. Risbud, S.H., Shan, C.-H.: Fast consolidation of ceramic powders. Mater Sci Eng A. 204(1), 146–151 (1995)

    Article  Google Scholar 

  18. Johnson, D.L.: Microwave and plasma sintering of ceramics. Ceram Int. 17(5), 295–300 (1991)

    Article  Google Scholar 

  19. Kim, B.-N., et al.: Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J Eur Ceram Soc. 29(2), 323–327 (2009)

    Article  Google Scholar 

  20. Morita, K., et al.: Densification behavior of a fine-grained MgAl2O4 spinel during spark plasma sintering (SPS). Scr Mater. 63(6), 565–568 (2010)

    Article  Google Scholar 

  21. Sokol, M., et al.: High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS). J Eur Ceram Soc. 34(16), 4305–4310 (2014)

    Article  Google Scholar 

  22. Zhang, H., et al.: Fabrication of transparent yttria by high-pressure spark plasma sintering. J Am Ceram Soc. 94(10), 3206–3210 (2011)

    Article  Google Scholar 

  23. ASTM C1327 - 15 Standard test method for vickers indentation hardness of advanced ceramics

  24. Meir, S., et al.: Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc. 92(2), 358–364 (2009)

    Article  Google Scholar 

  25. McKittrick, K.M.K.A.J.: Phase development and luminescence in chromium-doped yttrium aluminum garnet (YAC:Cr) phosphors. J Am Ceram Soc. 77(11), 2866–2872 (1994)

    Article  Google Scholar 

  26. Fabrichnaya, O.: Phase equilibria and thermodynamics in the Y2O3-Al2O3-SiO2 system. Z Metallkd. 92(9), 1083–1097 (2001)

    Google Scholar 

Download references


The authors would like to sincerely acknowledge Mr. Hosein Rajaei, Mr. Alireza Jam, and Mr. Sasan Ghashghai for their constructive comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohammad Zakeri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irankhah, R., Rahimipour, M.R., Zakeri, M. et al. In situ synthesis–sintering of YAG/MAS composites by reactive spark plasma sintering. J Aust Ceram Soc 54, 395–399 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Spark plasma sintering
  • In situ composite
  • Microstructure