The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method

Abstract

The marine species are especially suited for the production of bioceramic nano-powders with natural methods for their use in the biomedical field. However, there are only very limited studies regarding the production and synthesis of hydroxyapatite (HAp) and tricalcium phosphate (TCP) nanomaterials from the marine structures. The structure of coral is very unique due to its similarity to bone because their structure consists of calcium carbonate that is the precursor for the synthesis of HAp. In this research, nano-bioceramic powders were produced from the organ pipe red coral (Tubipora musica) by two different simple chemical conversion methods under two different synthesis methods rather than the common hydrothermal method. The main advantages of these two methods are that they are simple and more economical in comparison to other methods used. All samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The size and shape of converted particles and structures were controlled by adjusting the calcination temperature and most importantly the agitation-mixing rate. According to XRD and SEM results, it can be concluded that the nano-scale monetite and other calcium phosphate powders were successfully obtained by these simple methods although retained calcium carbonate also observed due to the partial conversion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Ylinen, P.: Applications of coralline hydroxyapatite with bioabsorbable containment and reinforcement as bone graft substitute. University of Helsinki, Helsinki (2006)

    Google Scholar 

  2. 2.

    Macha, I.J., Ozyegin, L., Chou, J., Samur, R., Oktar, F., Ben-Nissan, B.: An alternative synthesis method for di calcium phosphate (monetite) powders from Mediterranean mussel (Mytilus galloprovincialis) shells. J. Aust. Ceram. Soc. 49(2), 122–128 (2013)

    Google Scholar 

  3. 3.

    Kel, D., Gökçe, H., Bilgiç, D., Agaogulları, D., Duman, I., Öveçoğlu, M.L., Kayalı, E.S., Kıyıcı, I.A., Agathopoulos, S., Oktar, F.N.: Production of natural bioceramic from land snails. Key Eng. Mater. 493-494, 287–292 (2012). https://doi.org/10.4028/www.scientific.net/KEM.493-494.287

    Article  Google Scholar 

  4. 4.

    Oktar, F.N., Gokce, H., Gunduz, O., Sahin, Y.M., Agaogullari, D., Turner, I.G., Ozyegin, L.S., Ben-Nissan, B.: Bioceramic production from giant purple barnacle (Megabalanus tintinnabulum). Key Eng. Mater. 631, 137–142 (2015). https://doi.org/10.4028/www.scientific.net/KEM.631.137

    Article  Google Scholar 

  5. 5.

    Abidi, S.S.A., Murtaza, Q.: Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J. Mater. Sci. Technol. 30(4), 307–310 (2014)

    Article  Google Scholar 

  6. 6.

    Mahyuddin, F., Hermawan, H.: Biomaterials and medical devices: a perspective from an emerging country. Spring. 58, 25–28 (2016). https://doi.org/10.1007/978-3-319-14845-8

    Google Scholar 

  7. 7.

    Agaogullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M.L., Akarsubasi, A.T., Bilgiç, D., Oktar, F.N.: Bioceramic production from sea urchins. Acta Phys. Pol. A. 121(1), 23–25 (2012)

    Article  Google Scholar 

  8. 8.

    Ozyegin, L.S., Sima, F., Ristoscu, C., Kiyici, I.A., Mihailescu, I.N., Meydanoglu, O., Agathopoulos, S., Oktar, F.N.: Sea snail: an alternative source for nano-bioceramic production. Key Eng. Mater. 493-494, 781–786 (2012). https://doi.org/10.4028/www.scientific.net/KEM.493-494.781

    Article  Google Scholar 

  9. 9.

    Zamani, S., Mobasherpour, I., Salahi, E.: Synthesis of nano calcium hydroxyapatite from Persian Gulf coral. ICNS 4 (2012)

  10. 10.

    Agathopoulos, S., Ozyegin, L.S., Ahmad, Z., Gunduz, O., Kayali, E.S., Meydanoglu, O., Oktar, F.N.: Nano-bioceramics production from razor shell. Key Eng. Mater. 493-494, 775–780 (2012). https://doi.org/10.4028/www.scientific.net/KEM.493-494.775

    Article  Google Scholar 

  11. 11.

    Tamaşan, M., Ozyegin, L.S., Oktar, F.N., Simon, V.: Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Mater. Sci. Eng. C. 33, 2569–2577 (2013). https://doi.org/10.1016/j.msec.2013.02.019

    Article  Google Scholar 

  12. 12.

    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., Oktar, F.N.: A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J. Nanomater. 2014, 6 (2014). https://doi.org/10.1155/2014/382861

    Article  Google Scholar 

  13. 13.

    Macha, I.J., Ozyegin, L.S., Oktar, F.N., Ben-Nissan, B.: Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J. Aust. Ceram. Soc. 51(1), 125–133 (2015)

    Google Scholar 

  14. 14.

    Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F.N., Ferreira, J.M.F.: Scaffolds for bone restoration from cuttlefish. Bone. 37, 850–857 (2005). https://doi.org/10.1016/j.bone.2005.06.018

    Article  Google Scholar 

  15. 15.

    Tas, C.: Use of Vaterite and calcite in forming calcium phosphate cement scaffolds. 31th International Conference on Advanced Ceramics and Composites, January 21–27, Daytona Beach, FL, Invited Talk (2007)

  16. 16.

    Şahin, Y.M., Gündüz, O., Bulut, B., Özyeğin, L.S., Gökçe, H., Ağaoğulları, D., Chou, J., Kayali, E.S., Ben-Nissan, B., Oktar, F.N.: Nano-bioceramic synthesis from tropical sea snail shells (tiger cowrie—Cypraea Tigris) with simple chemical treatment. Acta Phys. Pol. A. 127(4), 1055–1058 (2015)

    Article  Google Scholar 

  17. 17.

    Hu, J., Fraser, R., Russell, J.J., Ben-Nissan, B., Vargo, R.: Australian coral as a biomaterial: characteristics. J. Mater. Sci. Technol. 16(6), 591–595 (2000)

    Google Scholar 

  18. 18.

    Kim, S.: Springer Handbook of Marine Biotechnology, p. 1252. Springer, Berlin (2015)

    Google Scholar 

  19. 19.

    Strum, C.F., Pearce, T.A., Valdes, A.: The Mollusks: a Guide to Their Study, Collection, and Preservation: a Publication of the American Malacological Society, p. 364. Universal-Publishers, Florida (2006)

    Google Scholar 

  20. 20.

    Scholle, P.A., Scholle, D.S.U.: A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir 77 (2003)

  21. 21.

    Pietra, F.: A Secret World: Natural Products of Marine Life, p. 112. Birkhäuser, Basel (2013)

    Google Scholar 

  22. 22.

    Somerville, M.: On molecular and microscopic science: on molecular and microscopic science, p. 130. John Murray, London (1869)

    Google Scholar 

  23. 23.

    Ammar, M.A.S.: An alarming threat to the red organ pipe coral Tubipora musica and suggested solutions. Ecol. Res. 20, 529–535 (2005). https://doi.org/10.1007/s11284-005-0064-7

    Article  Google Scholar 

  24. 24.

    Gunduz, O.: A simple method of producing hydroxyapatite and tri calcium phosphate from coral (Pocillopora verrucosa). J. Australas. Ceram. Soc. 50(2), 52–58 (2014)

    Google Scholar 

  25. 25.

    Konigsberger, E., Konigsberger, L.: Biomineralization: Medical Aspects of Solubility, p. 74. Wiley, Chichester (2006)

    Google Scholar 

  26. 26.

    Jang, H.L., Zheng, G.B., Park, J., Kim, H.D., Baek, H.R., Lee, H.K., Lee, K., Han, H.N., Lee, C.K., Hwang, N.S., Lee, J.H., Nam, K.T.: In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv. Healthc. Mater. 5(1), 128–136 (2016)

    Article  Google Scholar 

  27. 27.

    Dorozhkin, S.V.: Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 5(1), 9–70 (2016)

    Article  Google Scholar 

  28. 28.

    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Agaogulları, D., Gökçe, H., Kayali, E.S., Aktas, C., Ben-Nissan, B., Oktar, F.N.: Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Eng. Mater. 587, 80–85 (2014). https://doi.org/10.4028/www.scientific.net/KEM.587.80

    Article  Google Scholar 

  29. 29.

    Regnault, O., Lagneau, V., Schneider, H.: Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem. Geol. 265, 113–121 (2009)

    Article  Google Scholar 

  30. 30.

    Sheikh, Z., Abdallah, M.N., Hanafi, A.A., Misbahuddin, S., Rashid, H., Glogauer, M.: Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials. 8(11), 7913–7925 (2015)

    Article  Google Scholar 

  31. 31.

    Battistella, E., Mele, S., Foltran, I., Lesci, I.G., Roveri, N., Sabatino, P., Rimondini, L.: Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization. J. Appl. Biomater. Funct. Mater. 10(2), 99–106 (2012). https://doi.org/10.5301/JABFM.2012.9257

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Faik N. Oktar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karacan, I., Gunduz, O., Ozyegin, L.S. et al. The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method. J Aust Ceram Soc 54, 317–329 (2018). https://doi.org/10.1007/s41779-017-0156-1

Download citation

Keywords

  • Red corals
  • Monetite
  • Natural nano-bioceramics
  • Hydroxyapatite
  • Chemical conversion methods