Advertisement

Journal of the Australian Ceramic Society

, Volume 54, Issue 2, pp 317–329 | Cite as

The natural nano-bioceramic powder production from organ pipe red coral (Tubipora musica) by a simple chemical conversion method

  • Ipek Karacan
  • Oguzhan Gunduz
  • L. Sevgi Ozyegin
  • Hasan Gökce
  • Besim Ben-Nissan
  • Sibel Akyol
  • Faik N. Oktar
Research
  • 194 Downloads

Abstract

The marine species are especially suited for the production of bioceramic nano-powders with natural methods for their use in the biomedical field. However, there are only very limited studies regarding the production and synthesis of hydroxyapatite (HAp) and tricalcium phosphate (TCP) nanomaterials from the marine structures. The structure of coral is very unique due to its similarity to bone because their structure consists of calcium carbonate that is the precursor for the synthesis of HAp. In this research, nano-bioceramic powders were produced from the organ pipe red coral (Tubipora musica) by two different simple chemical conversion methods under two different synthesis methods rather than the common hydrothermal method. The main advantages of these two methods are that they are simple and more economical in comparison to other methods used. All samples were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The size and shape of converted particles and structures were controlled by adjusting the calcination temperature and most importantly the agitation-mixing rate. According to XRD and SEM results, it can be concluded that the nano-scale monetite and other calcium phosphate powders were successfully obtained by these simple methods although retained calcium carbonate also observed due to the partial conversion.

Keywords

Red corals Monetite Natural nano-bioceramics Hydroxyapatite Chemical conversion methods 

References

  1. 1.
    Ylinen, P.: Applications of coralline hydroxyapatite with bioabsorbable containment and reinforcement as bone graft substitute. University of Helsinki, Helsinki (2006)Google Scholar
  2. 2.
    Macha, I.J., Ozyegin, L., Chou, J., Samur, R., Oktar, F., Ben-Nissan, B.: An alternative synthesis method for di calcium phosphate (monetite) powders from Mediterranean mussel (Mytilus galloprovincialis) shells. J. Aust. Ceram. Soc. 49(2), 122–128 (2013)Google Scholar
  3. 3.
    Kel, D., Gökçe, H., Bilgiç, D., Agaogulları, D., Duman, I., Öveçoğlu, M.L., Kayalı, E.S., Kıyıcı, I.A., Agathopoulos, S., Oktar, F.N.: Production of natural bioceramic from land snails. Key Eng. Mater. 493-494, 287–292 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.493-494.287 CrossRefGoogle Scholar
  4. 4.
    Oktar, F.N., Gokce, H., Gunduz, O., Sahin, Y.M., Agaogullari, D., Turner, I.G., Ozyegin, L.S., Ben-Nissan, B.: Bioceramic production from giant purple barnacle (Megabalanus tintinnabulum). Key Eng. Mater. 631, 137–142 (2015).  https://doi.org/10.4028/www.scientific.net/KEM.631.137 CrossRefGoogle Scholar
  5. 5.
    Abidi, S.S.A., Murtaza, Q.: Synthesis and characterization of nano-hydroxyapatite powder using wet chemical precipitation reaction. J. Mater. Sci. Technol. 30(4), 307–310 (2014)CrossRefGoogle Scholar
  6. 6.
    Mahyuddin, F., Hermawan, H.: Biomaterials and medical devices: a perspective from an emerging country. Spring. 58, 25–28 (2016).  https://doi.org/10.1007/978-3-319-14845-8 Google Scholar
  7. 7.
    Agaogullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M.L., Akarsubasi, A.T., Bilgiç, D., Oktar, F.N.: Bioceramic production from sea urchins. Acta Phys. Pol. A. 121(1), 23–25 (2012)CrossRefGoogle Scholar
  8. 8.
    Ozyegin, L.S., Sima, F., Ristoscu, C., Kiyici, I.A., Mihailescu, I.N., Meydanoglu, O., Agathopoulos, S., Oktar, F.N.: Sea snail: an alternative source for nano-bioceramic production. Key Eng. Mater. 493-494, 781–786 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.493-494.781 CrossRefGoogle Scholar
  9. 9.
    Zamani, S., Mobasherpour, I., Salahi, E.: Synthesis of nano calcium hydroxyapatite from Persian Gulf coral. ICNS 4 (2012)Google Scholar
  10. 10.
    Agathopoulos, S., Ozyegin, L.S., Ahmad, Z., Gunduz, O., Kayali, E.S., Meydanoglu, O., Oktar, F.N.: Nano-bioceramics production from razor shell. Key Eng. Mater. 493-494, 775–780 (2012).  https://doi.org/10.4028/www.scientific.net/KEM.493-494.775 CrossRefGoogle Scholar
  11. 11.
    Tamaşan, M., Ozyegin, L.S., Oktar, F.N., Simon, V.: Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Mater. Sci. Eng. C. 33, 2569–2577 (2013).  https://doi.org/10.1016/j.msec.2013.02.019 CrossRefGoogle Scholar
  12. 12.
    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ben-Nissan, B., Oktar, F.N.: A new method for fabrication of nanohydroxyapatite and TCP from the sea snail Cerithium vulgatum. J. Nanomater. 2014, 6 (2014).  https://doi.org/10.1155/2014/382861 CrossRefGoogle Scholar
  13. 13.
    Macha, I.J., Ozyegin, L.S., Oktar, F.N., Ben-Nissan, B.: Conversion of ostrich eggshells (Struthio camelus) to calcium phosphates. J. Aust. Ceram. Soc. 51(1), 125–133 (2015)Google Scholar
  14. 14.
    Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F.N., Ferreira, J.M.F.: Scaffolds for bone restoration from cuttlefish. Bone. 37, 850–857 (2005).  https://doi.org/10.1016/j.bone.2005.06.018 CrossRefGoogle Scholar
  15. 15.
    Tas, C.: Use of Vaterite and calcite in forming calcium phosphate cement scaffolds. 31th International Conference on Advanced Ceramics and Composites, January 21–27, Daytona Beach, FL, Invited Talk (2007)Google Scholar
  16. 16.
    Şahin, Y.M., Gündüz, O., Bulut, B., Özyeğin, L.S., Gökçe, H., Ağaoğulları, D., Chou, J., Kayali, E.S., Ben-Nissan, B., Oktar, F.N.: Nano-bioceramic synthesis from tropical sea snail shells (tiger cowrie—Cypraea Tigris) with simple chemical treatment. Acta Phys. Pol. A. 127(4), 1055–1058 (2015)CrossRefGoogle Scholar
  17. 17.
    Hu, J., Fraser, R., Russell, J.J., Ben-Nissan, B., Vargo, R.: Australian coral as a biomaterial: characteristics. J. Mater. Sci. Technol. 16(6), 591–595 (2000)Google Scholar
  18. 18.
    Kim, S.: Springer Handbook of Marine Biotechnology, p. 1252. Springer, Berlin (2015)CrossRefGoogle Scholar
  19. 19.
    Strum, C.F., Pearce, T.A., Valdes, A.: The Mollusks: a Guide to Their Study, Collection, and Preservation: a Publication of the American Malacological Society, p. 364. Universal-Publishers, Florida (2006)Google Scholar
  20. 20.
    Scholle, P.A., Scholle, D.S.U.: A color guide to the petrography of carbonate rocks: grains, textures, porosity, diagenesis. AAPG Memoir 77 (2003)Google Scholar
  21. 21.
    Pietra, F.: A Secret World: Natural Products of Marine Life, p. 112. Birkhäuser, Basel (2013)Google Scholar
  22. 22.
    Somerville, M.: On molecular and microscopic science: on molecular and microscopic science, p. 130. John Murray, London (1869)Google Scholar
  23. 23.
    Ammar, M.A.S.: An alarming threat to the red organ pipe coral Tubipora musica and suggested solutions. Ecol. Res. 20, 529–535 (2005).  https://doi.org/10.1007/s11284-005-0064-7 CrossRefGoogle Scholar
  24. 24.
    Gunduz, O.: A simple method of producing hydroxyapatite and tri calcium phosphate from coral (Pocillopora verrucosa). J. Australas. Ceram. Soc. 50(2), 52–58 (2014)Google Scholar
  25. 25.
    Konigsberger, E., Konigsberger, L.: Biomineralization: Medical Aspects of Solubility, p. 74. Wiley, Chichester (2006)CrossRefGoogle Scholar
  26. 26.
    Jang, H.L., Zheng, G.B., Park, J., Kim, H.D., Baek, H.R., Lee, H.K., Lee, K., Han, H.N., Lee, C.K., Hwang, N.S., Lee, J.H., Nam, K.T.: In vitro and in vivo evaluation of whitlockite biocompatibility: comparative study with hydroxyapatite and β-tricalcium phosphate. Adv. Healthc. Mater. 5(1), 128–136 (2016)CrossRefGoogle Scholar
  27. 27.
    Dorozhkin, S.V.: Calcium orthophosphates (CaPO4): occurrence and properties. Prog. Biomater. 5(1), 9–70 (2016)CrossRefGoogle Scholar
  28. 28.
    Gunduz, O., Sahin, Y.M., Agathopoulos, S., Agaogulları, D., Gökçe, H., Kayali, E.S., Aktas, C., Ben-Nissan, B., Oktar, F.N.: Nano calcium phosphate powder production through chemical agitation from Atlantic deer cowrie shells (Cypraea cervus Linnaeus). Key Eng. Mater. 587, 80–85 (2014).  https://doi.org/10.4028/www.scientific.net/KEM.587.80 CrossRefGoogle Scholar
  29. 29.
    Regnault, O., Lagneau, V., Schneider, H.: Experimental measurement of portlandite carbonation kinetics with supercritical CO2. Chem. Geol. 265, 113–121 (2009)CrossRefGoogle Scholar
  30. 30.
    Sheikh, Z., Abdallah, M.N., Hanafi, A.A., Misbahuddin, S., Rashid, H., Glogauer, M.: Mechanisms of in vivo degradation and resorption of calcium phosphate based biomaterials. Materials. 8(11), 7913–7925 (2015)CrossRefGoogle Scholar
  31. 31.
    Battistella, E., Mele, S., Foltran, I., Lesci, I.G., Roveri, N., Sabatino, P., Rimondini, L.: Cuttlefish bone scaffold for tissue engineering: a novel hydrothermal transformation, chemical-physical, and biological characterization. J. Appl. Biomater. Funct. Mater. 10(2), 99–106 (2012).  https://doi.org/10.5301/JABFM.2012.9257 Google Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  • Ipek Karacan
    • 1
    • 2
  • Oguzhan Gunduz
    • 1
    • 3
  • L. Sevgi Ozyegin
    • 1
  • Hasan Gökce
    • 4
  • Besim Ben-Nissan
    • 2
  • Sibel Akyol
    • 5
  • Faik N. Oktar
    • 1
    • 6
  1. 1.Advanced Nanomaterials Research LaboratoryMarmara UniversityIstanbulTurkey
  2. 2.School of Life SciencesUniversity of Technology SydneySydneyAustralia
  3. 3.Department of Metallurgical and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  4. 4.Prof. Dr. Adnan Tekin Materials Science and Production Technologies Applied Research CenterIstanbul Technical UniversityIstanbulTurkey
  5. 5.Cerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
  6. 6.Department of Bioengineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey

Personalised recommendations