Journal of the Australian Ceramic Society

, Volume 54, Issue 2, pp 251–260 | Cite as

Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

  • Burak Ozbek
  • Barkın Erdogan
  • Nazmi Ekren
  • Faik Nuzhet Oktar
  • Sibel Akyol
  • Besim Ben-Nissan
  • Hilal Turkoglu Sasmazel
  • Cevriye Kalkandelen
  • Ayhan Mergen
  • Serap Erdem Kuruca
  • Gunes Ozen
  • Oguzhan GunduzEmail author


Nanofibrous composites of the poly(ε-caprolactone) (PCL), tricalcium phosphate (TCP), and hexagonal boron nitride (h-BN) with different compositions were manufactured by using an economical and non-complicated method called electrospinning. Produced fibrous structures showed no bead formation and had a clean surface. Characterization of the composites showed that particles were successfully mixed with polymer phase. High cell activity of SaOS-2 cells on the composites was observed with SEM images. In addition, fibrous scaffolds are biocompatible with human bone tissue and are highly degradable.


Biopolymers Biofibers Biomaterials Poly(ε-caprolactone) Composites 



We thank Dr. Ali Can Zaman for taking SEM images and Mediha Suleymanoglu for advising in in vitro testing. Prof. Dr. Ayhan Mergen is also co-author in this paper. He had worked a lot on the X-ray diffraction patterns of this valuable research. We owe a lot from his prestigious knowledge on this work. Dr. Mergen was the head of the Department of Metallurgical and Materials Engineering, Faculty of Engineering, of the Marmara University. He passed away after submitting this paper (August 20, 2017). We dedicate this paper to him. God (Allah) bless you our dear friend. Rest in peace.

Funding information

This study is funded by the Marmara University with the BAPKO project (FEN-C-YLP-250416-0182).


  1. 1.
    Thomas, V., Jagani, S., Johnson, K., Jose, M.V., Dean, D.R., Vohra, Y.K., Nyairo, E.: Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J. Nanosci. Nanotechnol. 6(2), 487–493 (2006)CrossRefGoogle Scholar
  2. 2.
    Mavis, B., Demirtaş, T.T., Gümüşderelioğlu, M., Gündüz, G., Çolak, Ü.: Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater. 5(8), 3098–3111 (2009)CrossRefGoogle Scholar
  3. 3.
    Agrawal, C., Ray, R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. A. 55(2), 141–150 (2001)CrossRefGoogle Scholar
  4. 4.
    Wutticharoenmongkol, P., Sanchavanakit, N., Pavasant, P., Supaphol, P.: Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol. Biosci. 6(1), 70–77 (2006)CrossRefGoogle Scholar
  5. 5.
    Kweon, H., Yoo, M.K., Park, I.K., Kim, T.H., Lee, H.C., Lee, H.S., Oh, J.S., Akaike, T., Cho, C.S.: A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 24(5), 801–808 (2003)CrossRefGoogle Scholar
  6. 6.
    Tarafder, S., Bose, S.: Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis. ACS Appl. Mater. Interfaces. 6(13), 9955–9965 (2014)CrossRefGoogle Scholar
  7. 7.
    Baykan, E., Koc, A., Eser, E.A., Murat, E.Y.: Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies. Biointerphases. 9(2), 029011 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, P., Zhao, L., Liu, J., Weir, M.D., Zhou, X., Xu, H.H.: Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2, 1–13 (2014)CrossRefGoogle Scholar
  9. 9.
    Hwang, H.J., Barakat, N.A., Kanjwal, M.A., Sheikh, F.A., Kim, H.Y., Abadir, M.F.: Boron nitride nanofibers by the electrospinning technique. Macromol. Res. 18(6), 551–557 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhu, Y.C., Bando, Y., Xue, D.F., Sekiguchi, T., Golberg, D., Xu, F.F., Liu, Q.L.: New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B. 108(20), 6193–6196 (2004)CrossRefGoogle Scholar
  11. 11.
    Keler, M.K., Daglilar, S., Gunduz, O.: Electrospun poly(ε-caprolactone)/bovine hydroxyapatite (BHA) composite nanofibers for bone tissue engineering. Key Eng. Mater. 720, 228–233 (2017)CrossRefGoogle Scholar
  12. 12.
    Agarwal, S., Greiner, A., Wendorff, J.H.: Functional materials by electrospinning of polymers. Prog. Polym. Sci. 38(6), 963–991 (2013)CrossRefGoogle Scholar
  13. 13.
    Van der Schueren, L., De Schoenmaker, B., Kalaoglu, Ö.I., De Clerck, K.: An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur. Polym. J. 47(6), 1256–1263 (2011)CrossRefGoogle Scholar
  14. 14.
    Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)CrossRefGoogle Scholar
  15. 15.
    Kalkandelen, C., Suleymanoglu, M., Kuruca, S.E., Akan, A., Oktar, F.N., Gunduz, O.: Part 2: biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites. J. Aust. Ceram. Soc. 53(1), 217–223 (2017)CrossRefGoogle Scholar
  16. 16.
    Lee, K.H., Kim, H.Y., Khil, M.S., Ra, Y.M., Lee, D.R.: Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. Polymer. 44(4), 1287–1294 (2003)CrossRefGoogle Scholar
  17. 17.
    Meng, Z.X., Zheng, W., Li, L., Zheng, Y.F.: Fabrication and characterization of three-dimensional nanofiber membrane of PCL–MWCNTs by electrospinning. Mater. Sci. Eng. C. 30(7), 1014–1021 (2010)CrossRefGoogle Scholar
  18. 18.
    Bianco, A., Di Federico, E., Cacciotti, I.: Electrospun poly(ε-caprolactone)-based composites using synthesized β-tricalcium phosphate. Polym. Adv. Technol. 22(12), 1832–1841 (2011)CrossRefGoogle Scholar
  19. 19.
    Polini, A., Pisignano, D., Parodi, M., Quarto, R., Scaglione, S.: Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 6(10), e26211 (2011)CrossRefGoogle Scholar
  20. 20.
    Hong, Z., Qiu, X., Sun, J., Deng, M., Chen, X., Jing, X.: Grafting polymerization of L-lactide on the surface of hydroxyapatite nano-crystals. Polymer. 45(19), 6699–6706 (2004)CrossRefGoogle Scholar
  21. 21.
    Tang, Y., Chen, L., Zhao, K., Wu, Z., Wang, Y., Tan, Q.: Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos. Sci. Technol. 125, 100–107 (2016)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  • Burak Ozbek
    • 1
  • Barkın Erdogan
    • 2
  • Nazmi Ekren
    • 3
  • Faik Nuzhet Oktar
    • 4
  • Sibel Akyol
    • 5
  • Besim Ben-Nissan
    • 6
  • Hilal Turkoglu Sasmazel
    • 7
  • Cevriye Kalkandelen
    • 8
  • Ayhan Mergen
    • 9
  • Serap Erdem Kuruca
    • 10
  • Gunes Ozen
    • 10
  • Oguzhan Gunduz
    • 1
    Email author
  1. 1.Advanced Nanomaterials Research Laboratory and Department of Metallurgical and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  2. 2.School of MedicineAcıbadem UniversityIstanbulTurkey
  3. 3.Advanced Nanomaterials Research Laboratory and Department of Electrical and Electronic Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  4. 4.Department of Bioengineering, Faculty of Engineering and Advanced Nanomaterials Research LaboratoryMarmara UniversityIstanbulTurkey
  5. 5.Cerrahpasa School of MedicineIstanbul UniversityIstanbulTurkey
  6. 6.Faculty of Science, School of Mathematical and Physical SciencesUniversity of Technology SydneySydneyAustralia
  7. 7.Department of Metallurgical and Materials Engineering, Faculty of EngineeringAtilim UniversityAnkaraTurkey
  8. 8.Vocational School of Technical Sciences and Department of Biomedical Devices TechnologyIstanbul UniversityIstanbulTurkey
  9. 9.Department of Metallurgical and Materials Engineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey
  10. 10.School of Medicine and Department of PhysiologyIstanbul UniversityIstanbulTurkey

Personalised recommendations