Skip to main content
Log in

The relation of pyroplastic deformation and liquid viscosity in vitreous ceramics

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Experiments were conducted to study the relation of pyroplastic deformation and liquid viscosity in vitreous ceramics. The pyroplastic deformation was researched through experimentation in a muffle furnace. The quenching method was introduced to gain the chemical composition of liquid phase in the sample. The experiment was carried out in a tube furnace. The Riboud model was selected to calculate the liquid viscosities based on the comprehensive consideration of different viscosity models. Generally, the small viscosity value of liquid phase in the sample at high temperature accelerates the deformation of the sample. On the other hand, the deformation is retarded if the viscosity value of the generated liquid phase is thicker than 2 × 104 Pa s. The chemical composition of the sample and the secondary mullite phase in the sample are other parameters which strongly impact the pyroplastic deformation of vitreous china.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koga, N., Taneo, M., Yasuda, M., Tateyama, S., Matsumoto, A., Nishikawa, T., Otsu, M. and Hongo, F.: Ceramics, ceramic blank, manufacturing method thereof, sanitary earthenware and manufacturing method thereof. U.S. Patent, 6242117, 2001

  2. Porte, F., Brydson, R., Rand, B., Riley, F.L.: Creep viscosity of vitreous china. J Am Ceram Soc. 87, 923–928 (2004)

    Article  Google Scholar 

  3. Tuncel, D.Y., Özel, E.: Evaluation of pyroplastic deformation in sanitaryware porcelain bodies. Ceram Int. 38, 1399–1407 (2012)

    Article  Google Scholar 

  4. Deng, T., Liu, B., Xu, X., Wu, J.: The effect of different solid phases on the pyroplastic deformation of porcelain. J Ceram Soc Japan. 123, 1004–1009 (2015)

    Article  Google Scholar 

  5. Henderson, H.B., Caldwell Henderson, J.H.: Increase in refractoriness in ceramic bodies in interrupted heat treatment. J Am Ceram Soc. 11, 795–802 (1928)

    Article  Google Scholar 

  6. Lee, S., Messing, G.L., Green, D.J.: Bending creep test to measure the viscosity of porous materials during sintering. J Am Ceram Soc. 86, 877–882 (2003)

    Article  Google Scholar 

  7. Iida, T., Sakai, H., Kita, Y., Murakami, K.: Equation for estimating viscosities of industrial mold fluxes. High Temperature Materials and Processes. 19, 153–164 (2011)

    Google Scholar 

  8. Mills, K.C.: The influence of structure on the physico-chemical properties of slags. ISIJ Int. 33, 148–155 (1993)

    Article  Google Scholar 

  9. Urbain, G., Cambier, H., Deletter, M., Anseau, M.R.: Viscosity of silicate melts. Trans Brit Ceram Soc. 80, 139–141 (1981)

    Google Scholar 

  10. Riboud, P.V., Roux, Y., Lucas, D., Gaye Facber, H.: Improvement of continuous casting powders. Hüttenprax Metallweiter Verarb. 19, 859–869 (1981)

    Google Scholar 

  11. Urbain, G., Boiret, M.: Viscosities of liquid silicates. Ironmak Steelmak. 17, 255–260 (1990)

    Google Scholar 

  12. Tang, X., Ma, M.: A description of slag viscosity model and the prediction capability. China Nonferrous Metallurgy. 44, 18–23 (2015)

    Google Scholar 

  13. Sichen, D., Bygden, J., Seetharaman, S.: A model for estimation of viscosities of complex metallic and ionic melts. Metall Mater Trans B Process Metall Mater Process Sci. 25, 519–525 (1994)

    Article  Google Scholar 

  14. Clark, D.E., Hench, L.L., Acree, W.A.: Electron microprobe analysis of Na2O-CaO-SiO2 glass [J]. J Am Ceram Soc. 58, 531 (1975)

    Article  Google Scholar 

  15. Borom, M.P., Hanneman, R.E.: Local compositional changes in alkali silicate glasses during electron microprobe analysis. J Appl Phys. 38, 2406–2407 (1967)

    Article  Google Scholar 

  16. Iqbal, Y., Lee, W.E.: Fired porcelain microstructure revisited. J Am Ceram Soc. 82, 3584–3590 (1999)

    Article  Google Scholar 

  17. Einstein, A.: Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Ann D Phys. 34, 591–592 (1911)

    Article  Google Scholar 

  18. Roscoe, R.: The end correction for rotation viscometers. Br J Appl Phys. 3, 267–269 (1952)

    Article  Google Scholar 

  19. Happel, J.: Viscosity of suspensions of uniform spheres. J Appl Phys. 28, 1288–1292 (1957)

    Article  Google Scholar 

  20. Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J Colloids Sci. 6, 162–170 (1951)

    Article  Google Scholar 

  21. Liu, B., Xu, X., Wu, J., Deng, T.: Effect of calcite on pyroplastic deformation of sanitary ware. J ceram (Chinese). 37, 338–344 (2016)

    Google Scholar 

Download references

Acknowledgements

The financial supports on the Project 51502230 from the National Natural Science Foundation of China are gratefully acknowledged. The authors are thankful to Prof. Liushun Wu from Anhui University of Technology for his valuable suggestions and thermodynamic calculation by FactSage 7.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Fang, J. & Lan, S. The relation of pyroplastic deformation and liquid viscosity in vitreous ceramics. J Aust Ceram Soc 53, 635–643 (2017). https://doi.org/10.1007/s41779-017-0075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0075-1

Keywords

Navigation