Journal of the Australian Ceramic Society

, Volume 53, Issue 2, pp 611–625 | Cite as

Wear behaviour of CrB2 + 5 wt.% MoSi2 composite against cemented tungsten carbide (WC-Co) under dry reciprocative sliding condition

  • B. Bhatt
  • T. S. R. Ch. Murthy
  • A. Nagaraj
  • K. Singh
  • J. K. Sonber
  • K. Sairam
  • A. Sashanka
  • G. V. S. Nageswara RaoEmail author
  • T. Srinivasa Rao
  • Vivekanand Kain


In the present work, reciprocative sliding wear behaviour of CrB2 + 5 wt.% MoSi2 composite was studied against WC-Co ball using different normal loads (5, 10 and 20 N) and frequencies (10, 15 Hz) under dry condition. Coefficient of friction (COF) and wear rate were measured at all test conditions. Wear mechanism was analysed by micro-structural characterization. It was found that COF is decreased from 0.68 to 0.32 with increasing load (5 to 20 N) and reciprocating frequency (10 to 15 Hz). The wear rate measured was minimum at 10 N load and 15 Hz frequency combination and was found to be 1.06 × 10–6 mm3/N m. The wear mechanisms identified during reciprocative sliding wear of CrB2 + 5 wt.% MoSi2 composite were abrasion, micro-fracture and surface tribo-oxidative reactions with delamination from tribo-zone. While abrasion with mild oxidative wear is the dominant wear mechanism at lower load (5 N) and frequency (10 Hz) combination, intensive tribo-oxidative wear was observed at higher loads (>10 N) and frequency (15 Hz).


Chromium diboride Molybdenum silicide Reciprocative sliding wear Coefficient of friction Wear mechanism 



The financial support by the Board of Research in Nuclear Science (BRNS) of the Department of Atomic Energy (DAE), Government of India (No. 2013/36/15-BRNS) is gratefully acknowledged. The authors would like to thank Mr. Sumanta Behra and Mr. Y. M. Thakur for their help in the sample preparation and schematic drawing. The authors also would like to acknowledge Dr. Amit Verma for micro-XRD analysis of wear debris.


  1. 1.
    Emiliani, M.L.: Characterization and oxidation resistance of hot-pressed chromium diboride. Mater Sci Eng A. 172(1–2), 111–124 (1993)CrossRefGoogle Scholar
  2. 2.
    Shackelford, J.F., Han, Y.-H., Kim, S., Kwon, S.-H.: CRC Materials Science and Engineering Handbook, CRC Press, (2016)Google Scholar
  3. 3.
    Dahm, K.L., Jordan, L.R., Haase, J., Dearnley, P.A.: Magnetron sputter deposition of chromium diboride coatings. Surf Coat Technol. 108-109, 413–418 (1998)CrossRefGoogle Scholar
  4. 4.
    Jordan, L.R., Betts, A.J., Dahm, K.L., Dearnley, P.A., Wright, G.A.: Corrosion and passivation mechanism of chromium diboride coatings on stainless steel. Corros Sci. 47(5), 1085–1096 (2005)CrossRefGoogle Scholar
  5. 5.
    Sonber, J.K., Murthy, T.S.R.C., Subramanian, C., Kumar, S., Fotedar, R.K., Suri, A.K.: Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride. Int J Refract Met Hard Mater. 27(5), 912–918 (2009)CrossRefGoogle Scholar
  6. 6.
    Mahesh, B., Sairam, K., Sonber, J.K., Murthy, T.S.R.C., Nageswara Rao, G.V.S., Srinivasa Rao, T., Chakravartty, J.K.: Sinterability studies of monolithic chromium diboride (CrB2) by spark plasma sintering. Int J Refract Met Hard Mater. 52, 66–69 (2015)CrossRefGoogle Scholar
  7. 7.
    Umanskyi, O., Poliarus, O., Ukrainets, M., Martsenyuk, I.: Effect of ZrB2, CrB2 and TiB2 additives on the tribological characteristics of NiAl-based gas-thermal coatings. Key Eng Mater. 604, 20–23 (2014)CrossRefGoogle Scholar
  8. 8.
    Umanskyi, O., Poliarus, O., Ukrainets, M., Antonov, M., Hussainova, I.: High temperature sliding wear of NiAl-based coatings reinforced by borides. Mater Sci (MEDŽIAGOTYRA). 22(1), 49–53 (2016)Google Scholar
  9. 9.
    Bedse, R.D., Sonber, J.K., Sairam, K., Murthy, T.S.R.C., Hubli, R.C.: Processing and characterization of CrB2-based novel composites. High Temp Mater Process. 34(7), 683–687 (2015)Google Scholar
  10. 10.
    Reddy, V., Sonber, J.K., Sairam, K., Murthy, T.S.R.C., Kumar, S., Nageswara Rao, G.V.S., Srinivasa Rao, T., Chakravartty, J.K.: Densification and mechanical properties of CrB2+ MoSi2 based novel composites. Ceram Int. 41(6), 7611–7617 (2015)CrossRefGoogle Scholar
  11. 11.
    Murthy, T.S.R.C., Basu, B., Srivastava, A., Balasubramaniam, R., Suri, A.K.: Tribological properties of TiB2 and TiB2–MoSi2 ceramic composites. J Eur Ceram Soc. 26(7), 1293–1300 (2006)CrossRefGoogle Scholar
  12. 12.
    Sonber, J.K., Murthy, T.S.R.Ch., Subramanian, C., Hubli, R.C., Suri, A.K.: Processing methods for ultra-high temperature ceramics. In: Low, I.M., Sakka, Y., Hu, C.F. (eds.) MAX Phases Ultra-high Temperature Ceramics for Extreme Environments, Chapter 6, 180–202 (2013)Google Scholar
  13. 13.
    Bhushan, B.: Principles and Applications of Tribology, Wiley, (2013)Google Scholar
  14. 14.
    Bhatt, B., Murthy, T.S.R.C., Limaye, P.K., Nagaraj, A., Singh, K., Sonber, J.K., Sairam, K., Sashanka, A., Nageswara Rao, G.V.S., Srinivasa Rao, T.: Tribological studies of monolithic chromium diboride against cemented tungsten carbide (WC-Co) under dry condition. Ceram Int. 42, 15536–15546 (2016)CrossRefGoogle Scholar
  15. 15.
    Basu, B., Vleugels, J., Van der Biest, O.: Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication. Wear. 250(1–12), 631–641 (2001)CrossRefGoogle Scholar
  16. 16.
    Fischer, T.E., Zhu, Z., Kim, H., Shin, D.S.: Genesis and role of wear debris in sliding wear of ceramics. Wear. 245(1–2), 53–60 (2000)CrossRefGoogle Scholar
  17. 17.
    Basu, B., Kalin, M.: Tribology of Ceramics and Composites: Materials Science Perspective, Wiley, (2011)Google Scholar
  18. 18.
    Murthy, T.S.R.C., Sonber, J.K., Subramanian, C., Hubli, R.C., Krishnamurthy, N., Suri, A.K.: Densification, characterization and oxidation studies of (Ti,Cr)B2+20% MoSi2. Int J Refract Met Hard Mater. 37, 12–28 (2013)CrossRefGoogle Scholar
  19. 19.
    ASTM G133-05: Stand. Test Method Linearly Reciprocating Ball-on-Flat Sliding Wear, Annu. B. ASTM Stand. 3 (2010)Google Scholar
  20. 20.
    Murthy, T.S.R.C., Limaye, P.K., Sonber, J.K., Sairam, K., Nagaraj, A., Subramanian, C., Soni, N.L., Patel, R.J., Hubli, R.C.: Friction and wear properties of hot pressed (Ti, Cr)B2+MoSi2 composite in sliding against WC ball. Int J Refract Met Hard Mater. 43, 276–283 (2014)CrossRefGoogle Scholar
  21. 21.
    Poliarus, O., Umanskyi, O., Ukrainets, M., Kostenko, O., Antonov, M., Hussainova, I.: Influence of Cr, Ti and Zr oxides formation on high temperature sliding of NiAl-based plasma spray coatings. Key Eng Mater. 674, 308–312 (2016)CrossRefGoogle Scholar
  22. 22.
    Sonber, J.K., Limaye, P.K., Murthy, T.S.R.C., Sairam, K., Nagaraj, A., Soni, N.L., Patel, R.J., Chakravartty, J.K.: Tribological properties of boron carbide in sliding against WC ball. Int J Refract Met Hard Mater. 51, 110–117 (2015)CrossRefGoogle Scholar
  23. 23.
    Raju, G.B., Basu, B.: Influence of MoSi2 addition on load-dependent fretting wear properties of TiB2 against cemented carbide. J Am Ceram Soc. 92(9), 2059–2066 (2009)CrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay, A., Raju, G.B., Basu, B.: Understanding influence of MoSi2 addition (5 weight percent) on tribological properties of TiB2. Metall Mater Trans A. 39(12), 2998–3013 (2008)CrossRefGoogle Scholar
  25. 25.
    Brahma Raju, G., Basu, B.: Wear mechanisms of TiB2 and TiB2–TiSi2 at fretting contacts with steel and WC–6 wt% Co. Int J Appl Ceram Technol. 7(1), 89–103 (2010)CrossRefGoogle Scholar
  26. 26.
    Wäsche, R., Klaffke, D.: In situ formation of tribologically effective oxide interfaces in SiC-based ceramics during dry oscillating sliding. Tribol Lett. 5(2–3), 173–190 (1998)CrossRefGoogle Scholar
  27. 27.
    Gates, J.D.: Two-body and three-body abrasion: a critical discussion. Wear. 214(1), 139–146 (1998)CrossRefGoogle Scholar
  28. 28.
    Reed, T.B.: Free Energy of Formation of Binary Compounds: an Atlas of Charts for High-Temperature Chemical Calculations. Cambridge, Mass., MIT Press, London (1971)Google Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  • B. Bhatt
    • 1
  • T. S. R. Ch. Murthy
    • 2
  • A. Nagaraj
    • 3
  • K. Singh
    • 2
  • J. K. Sonber
    • 2
  • K. Sairam
    • 2
  • A. Sashanka
    • 1
  • G. V. S. Nageswara Rao
    • 1
    Email author
  • T. Srinivasa Rao
    • 4
  • Vivekanand Kain
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyWarangalIndia
  2. 2.Materials Processing and Corrosion Engineering DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Laser and Plasma Technology DivisionBhabha Atomic Research CentreMumbaiIndia
  4. 4.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations