Part 2: biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites


The biocompatibility of clinoptilolite/alumina/bovine hydroxyapatite (Cp - A12O3 - BHA) composite, at different ratio obtained by powder pressing process, were investigated studying the behavior of osteosarcoma (SAOS-2) cells. The biocompatibility was examined by means of cytotoxicity and cytocompatibility tests. The structure and morphology of bioceramic composites were studied by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) technique. The results showed that these materials have no toxic effects. The natural composite that fabricated in this study may be a promising approach for bone-engineering applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Kalkanadelen, C., Gunduz, O., Akan, A., Oktar, F.N.: Part 1: Clinoptilolite - Alumina - Hydroxyapatite Composites for Biomedical Engineering. Aust Ceram. (2016)

  2. 2.

    O’Brien, W.J.: Dental Materials and Their Selection 3rd ed. Edited by William J. O’Brien, PhD, FADM. Quintessence Pub. Co. Inc., Chicago (2002)

  3. 3.

    Erkmen, Z.E., Genc, Y., Oktar, F.N.: Microstructual and mechanical properties of hydroxyapatite—zirconia composites. Jurnal American Society. 90, 2885–2892 (2007)

    Google Scholar 

  4. 4.

    Oktar, F.N., Goller, G.: Sintering effects on mechanical properties of glass—reinforced hydroxyapatite composites. Ceram Int. 28, 617–621 (2002)

    Article  Google Scholar 

  5. 5.

    Oktar, F.N., Agathopoulo, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S.: Mechanical properties of bovine hydroxyapatite (BHA) of composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med. 18, 2137–2143 (2007)

    Article  Google Scholar 

  6. 6.

    Welch, R.D., Hudson, B., Crawford, K., Zhang, H., Zobitz, M., Bronson, D., Krishnan, S.: Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years. J Orthop Res. 20, 464472 (2002)

    Article  Google Scholar 

  7. 7.

    Fielding, G., Bose, S.: SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9, 9137–9148 (2013)

    Article  Google Scholar 

  8. 8.

    Sampaio, B.V., Göller, G., Oktar, F.N., Valério, P., Goes, A., Leite, M.F.: Evaluation of osteoblast viability, alkaline phosphatase production and collagen secretion in the presence of hydroxyapatite reinforced with oxide glasses. Key Eng Mater. 284-286, 635–638 (2005)

    Article  Google Scholar 

  9. 9.

    Kowalczyk, P., Sprynskyy, M., Terzyk, A.P., Lebedynets, M., Namieśnik, J., Buszewski, B.: Porous structure of natural and modified clinoptilolites. J Colloid Interface Sci. 297, 77–85 (2006)

    Article  Google Scholar 

  10. 10.

    Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Diki, I., Katić, M., Kralj, M., Bosnar, M.H., Kapitanović, S., Poljak-Blaži, M., Križanac, Š., Stojković, R., Jurin, M., Subotić, B., Čolić, M.: Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med. 78, 708–720 (2001)

    Article  Google Scholar 

  11. 11.

    Iqbal, N., Kadir, M.R.A., Mahmood, N.H.B., Yusoff, M.F.M., Siddique, J.A., Salim, N., Froemming, G.R.A., Sarian, M.N., Raghavendran, H.R.B., Kamarul, T.: Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceram Int. 40, 16091–16097 (2014)

    Article  Google Scholar 

  12. 12.

    Hannora, A.E.: Preparation and characterization of hydroxyapatite/alumina nanocomposites by high-energy vibratory ball milling. J Ceramic Science and Technology. 05(04), 293–298 (2014)

    Google Scholar 

  13. 13.

    Ji, H., Marquis, P.M.: Sintering behaviour of hydroxyapatite reinforced with 20 wt% AI203. Journal of Materıals Science. 28, 1941–1945 (1993)

    Article  Google Scholar 

  14. 14.

    Oktar, F.N., Kesenci, K., Piskin, E.: Artif Cell, Blood Sub Immobil Biotechnology. 27(4), 367–379 (1999)

    Article  Google Scholar 

  15. 15.

    Komur, B., Lohse, T., Can, H.M., Khalilova, G., Geçimli, Z.N., Aydoğdu, M.O., Kalkandelen, C., Stan, G.E., Sahin, Y.M., Sengil, A.Z., Suleymanoglu, M., Kuruca, S.E., Oktar, F.N., Salman, S., Ekren, N., Ficaiand, A., Gunduz, O.: Fabrication of natural pumice/hydroxyapatite composite for biomedical engineering. BioMedEngOnLine. 15, 81 (2016). doi:10.1186/s12938-016-0203-0

    Google Scholar 

  16. 16.

    Deniz, D.Y., Kahraman, M.V., Kuruca, S.E., Suleymanoglu, M., Gungor, A.: 4-vinylbenzene boronic acid—hydroxy apatite/polyvinyl alcohol based nanofiber scaffold synthesized by UV-activated reactive electrospinning. International Journal of Polymeric Materials and Polymeric Biomaterials. 64, 727–732. doi:10.1080/00914037.2014.1002130

  17. 17.

    Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 65, 55–63 (1983)

    Article  Google Scholar 

  18. 18.

    Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., Figueiredo, H.: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 36, 2383–2393 (2010)

    Article  Google Scholar 

  19. 19.

    Pattanayak, D.K., Divya, P., Upadhyay, S., Prasad, R.C., Rao, B.T., Mohan, T.R.M.: Synthesis and evaluation of hydroxyapatite ceramics. Trends Biomater Artif Organs. 18(2), 87–92 (2005)

    Google Scholar 

  20. 20.

    Mansouri, N., Rikhtegar, N., Panahi, H.A., Atabi, F., Shahraki, B.K.: Porosity, characterization and structural properties of natural zeolite—clinoptilolite—as a sorbent. Environ Prot Eng. 39, 139–152 (2013)

    Google Scholar 

  21. 21.

    Zhan, Y., Lin, J., Li, J.: Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper (II). Environ Sci Pollut Res. 20, 2512–2526 (2013)

    Article  Google Scholar 

  22. 22.

    Pechar, F., Rykl, D.: Infrared spectra of natural zeolites of the stilbite group. Chem zvesti. 35(2), 189–202 (1981)

    Google Scholar 

  23. 23.

    Lin, H., Liu, Q., Dong, Y., Chen, Y., Huo, H., Liu, S.: Study on channel features and mechanism of clinoptilolite modified by LaCl3. Journal of Materials Science Research. 2(4), 37–44 (2013)

    Article  Google Scholar 

  24. 24.

    Sanches, E.A., de Souza, S.M., Carvalho, A.P.L., Trovati, G., Fernandes, E.G.R., Mascarenhas, Y.P.: Nanocomposite based on polyaniline emeraldine-base and α-Al2O3: a structural characterization. International Int J Mater Res. 106(10), (2015) formerly Z. Metallkd. doi:10.3139/146.111280

  25. 25.

    Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M., Roy, P., Tétot, R.: Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem. 182, 1171–1176 (2009)

    Article  Google Scholar 

Download references


This study was supported by Istanbul University, Scientific Research Projects Coordination Unit, Project No: 29071.

Author information



Corresponding author

Correspondence to C. Kalkandelen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalkandelen, C., Suleymanoglu, M., Kuruca, S.E. et al. Part 2: biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites. J Aust Ceram Soc 53, 217–223 (2017).

Download citation


  • Bovine hydroxyapatite
  • Clinoptilolite
  • Alumina
  • Biocomposites
  • Biocompatibility