Advertisement

Journal of the Australian Ceramic Society

, Volume 53, Issue 1, pp 217–223 | Cite as

Part 2: biocompatibility evaluation of hydroxyapatite-based clinoptilolite and Al2O3 composites

  • C. Kalkandelen
  • M. Suleymanoglu
  • S. E. Kuruca
  • A. Akan
  • F.N. Oktar
  • O. Gunduz
Research

Abstract

The biocompatibility of clinoptilolite/alumina/bovine hydroxyapatite (Cp - A12O3 - BHA) composite, at different ratio obtained by powder pressing process, were investigated studying the behavior of osteosarcoma (SAOS-2) cells. The biocompatibility was examined by means of cytotoxicity and cytocompatibility tests. The structure and morphology of bioceramic composites were studied by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) technique. The results showed that these materials have no toxic effects. The natural composite that fabricated in this study may be a promising approach for bone-engineering applications.

Keywords

Bovine hydroxyapatite Clinoptilolite Alumina Biocomposites Biocompatibility 

Notes

Acknowledgements

This study was supported by Istanbul University, Scientific Research Projects Coordination Unit, Project No: 29071.

References

  1. 1.
    Kalkanadelen, C., Gunduz, O., Akan, A., Oktar, F.N.: Part 1: Clinoptilolite - Alumina - Hydroxyapatite Composites for Biomedical Engineering. Aust Ceram. (2016)Google Scholar
  2. 2.
    O’Brien, W.J.: Dental Materials and Their Selection 3rd ed. Edited by William J. O’Brien, PhD, FADM. Quintessence Pub. Co. Inc., Chicago (2002)Google Scholar
  3. 3.
    Erkmen, Z.E., Genc, Y., Oktar, F.N.: Microstructual and mechanical properties of hydroxyapatite—zirconia composites. Jurnal American Society. 90, 2885–2892 (2007)Google Scholar
  4. 4.
    Oktar, F.N., Goller, G.: Sintering effects on mechanical properties of glass—reinforced hydroxyapatite composites. Ceram Int. 28, 617–621 (2002)CrossRefGoogle Scholar
  5. 5.
    Oktar, F.N., Agathopoulo, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S.: Mechanical properties of bovine hydroxyapatite (BHA) of composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med. 18, 2137–2143 (2007)CrossRefGoogle Scholar
  6. 6.
    Welch, R.D., Hudson, B., Crawford, K., Zhang, H., Zobitz, M., Bronson, D., Krishnan, S.: Subchondral defects in caprine femora augmented with in situ setting hydroxyapatite cement, polymethylmethacrylate, or autogenous bone graft: biomechanical and histomorphological analysis after two-years. J Orthop Res. 20, 464472 (2002)CrossRefGoogle Scholar
  7. 7.
    Fielding, G., Bose, S.: SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9, 9137–9148 (2013)CrossRefGoogle Scholar
  8. 8.
    Sampaio, B.V., Göller, G., Oktar, F.N., Valério, P., Goes, A., Leite, M.F.: Evaluation of osteoblast viability, alkaline phosphatase production and collagen secretion in the presence of hydroxyapatite reinforced with oxide glasses. Key Eng Mater. 284-286, 635–638 (2005)CrossRefGoogle Scholar
  9. 9.
    Kowalczyk, P., Sprynskyy, M., Terzyk, A.P., Lebedynets, M., Namieśnik, J., Buszewski, B.: Porous structure of natural and modified clinoptilolites. J Colloid Interface Sci. 297, 77–85 (2006)CrossRefGoogle Scholar
  10. 10.
    Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Diki, I., Katić, M., Kralj, M., Bosnar, M.H., Kapitanović, S., Poljak-Blaži, M., Križanac, Š., Stojković, R., Jurin, M., Subotić, B., Čolić, M.: Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med. 78, 708–720 (2001)CrossRefGoogle Scholar
  11. 11.
    Iqbal, N., Kadir, M.R.A., Mahmood, N.H.B., Yusoff, M.F.M., Siddique, J.A., Salim, N., Froemming, G.R.A., Sarian, M.N., Raghavendran, H.R.B., Kamarul, T.: Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceram Int. 40, 16091–16097 (2014)CrossRefGoogle Scholar
  12. 12.
    Hannora, A.E.: Preparation and characterization of hydroxyapatite/alumina nanocomposites by high-energy vibratory ball milling. J Ceramic Science and Technology. 05(04), 293–298 (2014)Google Scholar
  13. 13.
    Ji, H., Marquis, P.M.: Sintering behaviour of hydroxyapatite reinforced with 20 wt% AI203. Journal of Materıals Science. 28, 1941–1945 (1993)CrossRefGoogle Scholar
  14. 14.
    Oktar, F.N., Kesenci, K., Piskin, E.: Artif Cell, Blood Sub Immobil Biotechnology. 27(4), 367–379 (1999)CrossRefGoogle Scholar
  15. 15.
    Komur, B., Lohse, T., Can, H.M., Khalilova, G., Geçimli, Z.N., Aydoğdu, M.O., Kalkandelen, C., Stan, G.E., Sahin, Y.M., Sengil, A.Z., Suleymanoglu, M., Kuruca, S.E., Oktar, F.N., Salman, S., Ekren, N., Ficaiand, A., Gunduz, O.: Fabrication of natural pumice/hydroxyapatite composite for biomedical engineering. BioMedEngOnLine. 15, 81 (2016). doi: 10.1186/s12938-016-0203-0 Google Scholar
  16. 16.
    Deniz, D.Y., Kahraman, M.V., Kuruca, S.E., Suleymanoglu, M., Gungor, A.: 4-vinylbenzene boronic acid—hydroxy apatite/polyvinyl alcohol based nanofiber scaffold synthesized by UV-activated reactive electrospinning. International Journal of Polymeric Materials and Polymeric Biomaterials. 64, 727–732. doi: 10.1080/00914037.2014.1002130
  17. 17.
    Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth. 65, 55–63 (1983)CrossRefGoogle Scholar
  18. 18.
    Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., Figueiredo, H.: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 36, 2383–2393 (2010)CrossRefGoogle Scholar
  19. 19.
    Pattanayak, D.K., Divya, P., Upadhyay, S., Prasad, R.C., Rao, B.T., Mohan, T.R.M.: Synthesis and evaluation of hydroxyapatite ceramics. Trends Biomater Artif Organs. 18(2), 87–92 (2005)Google Scholar
  20. 20.
    Mansouri, N., Rikhtegar, N., Panahi, H.A., Atabi, F., Shahraki, B.K.: Porosity, characterization and structural properties of natural zeolite—clinoptilolite—as a sorbent. Environ Prot Eng. 39, 139–152 (2013)Google Scholar
  21. 21.
    Zhan, Y., Lin, J., Li, J.: Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper (II). Environ Sci Pollut Res. 20, 2512–2526 (2013)CrossRefGoogle Scholar
  22. 22.
    Pechar, F., Rykl, D.: Infrared spectra of natural zeolites of the stilbite group. Chem zvesti. 35(2), 189–202 (1981)Google Scholar
  23. 23.
    Lin, H., Liu, Q., Dong, Y., Chen, Y., Huo, H., Liu, S.: Study on channel features and mechanism of clinoptilolite modified by LaCl3. Journal of Materials Science Research. 2(4), 37–44 (2013)CrossRefGoogle Scholar
  24. 24.
    Sanches, E.A., de Souza, S.M., Carvalho, A.P.L., Trovati, G., Fernandes, E.G.R., Mascarenhas, Y.P.: Nanocomposite based on polyaniline emeraldine-base and α-Al2O3: a structural characterization. International Int J Mater Res. 106(10), (2015) formerly Z. Metallkd. doi: 10.3139/146.111280
  25. 25.
    Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M., Roy, P., Tétot, R.: Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem. 182, 1171–1176 (2009)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2017

Authors and Affiliations

  • C. Kalkandelen
    • 1
    • 2
  • M. Suleymanoglu
    • 3
  • S. E. Kuruca
    • 3
  • A. Akan
    • 4
    • 1
  • F.N. Oktar
    • 5
    • 6
  • O. Gunduz
    • 7
    • 6
  1. 1.Biomedical Engineering, Ph.D. Program, Institute of Graduate Studies in Science and EngineeringIstanbul UniversityIstanbulTurkey
  2. 2.Vocational School of Technical Sciences, Biomedical Devices Technology DepartmentIstanbul UniversityIstanbulTurkey
  3. 3.Istanbul Faculty of PhysiologyIstanbul UniversityIstanbulTurkey
  4. 4.Department of Biomedical Engineering, Faculty of Engineering and ArchitectureIzmir Katip Celebi UniversityIzmirTurkey
  5. 5.Department of Bioengineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey
  6. 6.Advanced Nanomaterials Research LaboratoryMarmara UniversityIstanbulTurkey
  7. 7.Department of Metallurgy and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey

Personalised recommendations