Part 1: clinoptilolite–alumina–hydroxyapatite composites for biomedical engineering


The preparation and characterization of bovine hydroxyapatite (BHA) and clinoptilolite–alumina composites are studied. Clinoptilolite (Cp) and aluminium oxide (Al2O3) (at varying concentrations 5, 10 and 15 wt% ) were added to calcinated BHA powder. Green cylindrical samples were sintered at several temperatures between 1000 and 1300 °C for 4 h in air. Compression strength, Vickers microhardness and elastic modulus, as well as density, were evaluated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies were also performed. The experimental results showed that varying concentrations 5, 10 and 15 wt% Cp–Al2O3 to BHA and difference in the sintering temperature between 1000 and 1300 °C increase in the microhardness (67 and 305 HV, respectively), compression strength (between 31 and 105.6 MPa, respectively) and elastic modulus (between 540 and 1275 MPa, respectively). The experimental results gained optimal parameters to be utilized in the preparation of BHA and Cp–Al2O3 composites. These natural Cp–Al2O3/BHA composites have the potential to be used in several advanced biomedical engineering applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bohner, M., Tadier, S., van Garderen, N., de Gasparo, A., Döbelin, N., Baroud, G.: Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter. 3, e25103 (2013). doi:10.4161/biomatter.25103

    Article  Google Scholar 

  2. 2.

    Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N.: Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mech Behav Biomed Mater. 35, 70–76 (2014)

    Article  Google Scholar 

  3. 3.

    Goller, G., Oktar, F.N., Ozyegin, L.S., Kayali, E.S., Demirkesen, E.: Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Mater Lett. 58(21), 2599–2604 (2004)

    Article  Google Scholar 

  4. 4.

    Ozyegin, L.S., Oktar, F.N., Goller, G., Kayali, E.S., Yazici, T.: Plasma-sprayed bovine hydroxyapatite coatings. Mater Lett. 58(21), 2605–2609 (2004)

    Article  Google Scholar 

  5. 5.

    Oktar, F.N., Göller, G.: Sintering effects on mechanical properties of glass-reeinforced hydroxyapatite composites. Ceram Int. 28(2), 617–621 (2002)

    Article  Google Scholar 

  6. 6.

    Erkmen, Z.E., Genç, Y., Oktar, F.N.: The microstructural and mechanical properties of hydroxyapatite-zirconia composites. J Am Ceram Soc. 9(90), 2885–2892 (2007)

    Article  Google Scholar 

  7. 7.

    Bogdanov, B., Georgiev, D., Angelova, K., Yaneva, K.: Natural zeolites: clinoptilolite, review. International science conference 4th -5th June 2009, Stara Zagora, Bulgaria. Economics and Society development on the Base of Knowledge. 4, 6–11 (2009)

    Google Scholar 

  8. 8.

    Nishihara, H., Kyotani, T.: Zeolite-Templated Carbon—Its Unique Characteristics and Applications, Novel Carbon Adsorbents Chapter 10. Elsevier, Amsterdam (2012)

    Google Scholar 

  9. 9.

    Gazi, N.A., Malek, N.A.N.N., Hamdan, S.: Cytostatic activity of clinoptilolite against human cervical cancer cell lines using three different media-sterilization techniques. Adv Mater Res (Durnten-Zurich, Switz). 626, 667–671 (2013)

    Article  Google Scholar 

  10. 10.

    Ceyhan, T., Tatlier, M., Akçakaya, H.: In vitro evaluation of the use of zeolites as biomaterials: effects on simulated body fluid and two types of cells. J Mater Sci Mater Med. 18, 1557–1562 (2007)

    Article  Google Scholar 

  11. 11.

    Iqbal, N., Kadir, M.R.A., Mahmood, N.H.B., Yusoff, M.F.M., Siddique, J.A., Salim, N., Froemming, G.R.A., Sarian, M.N., Raghavendran, H.R.B., Kamarul, T.: Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceram Int. 40, 16091–16097 (2014)

    Article  Google Scholar 

  12. 12.

    Schainberg, A.P.M., Ozyegin, L.S., Kursuoğlu, P., Valerio, P., Goes, A.M., Leite, M.F.: Biocompatibility evaluation of zeolite compared to bone HA, calcium phosphate (Ca2PO4) and eugenol paste. Key Eng Mater. 284-286, 561–564 (2005)

    Article  Google Scholar 

  13. 13.

    Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Diki, I., Katić, M., Kralj, M., Bosnar, M.H., Kapitanović, S., Poljak-Blaži, M., Križanac, Š., Stojković, R., Jurin, M., Subotić, B., Čolić, M.: Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med. 78, 708–720 (2001)

    Article  Google Scholar 

  14. 14.

    Goller, G., Yazici, T., Oktar, F.N., Demirkesen, E., Kayali, E.S.: Analysis of in-vitro reaction layers formed on plasma sprayed bioglass-titanium coatings. Key Eng Mater. 264-268, 1973–1976 (2004)

    Article  Google Scholar 

  15. 15.

    Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. ACS Biomater Sci Eng. 32, 2757–2774 (2011)

    Google Scholar 

  16. 16.

    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Article  Google Scholar 

  17. 17.

    Bi, L., Rahaman, M.N., Day, D.E., Brown, Z., Samujh, C., Liu, X., Mohammadkhah, A., Dusevich, V., Eick, J.D., Bonewald, L.F.: Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 9, 8015–8026 (2013)

    Article  Google Scholar 

  18. 18.

    Valério, P., Goes, A.M., Karaçaylı, U., Gunduz, O., Salman, S., Sengil, A.Z., Yılmaz, S., Agathopoulos, S., Oktar, F.N.: Influence of Boroxide Bioactive Bioglasses (BBB) on Osteoblast Viability, Biodental Engineering. CRC Press/Balkema, Leiden (2010)

    Google Scholar 

  19. 19.

    Ebrahimi, M., Ebadzadeh, T., Salah, E.: Effect of sintering atmosphere on phase evolution of hydroxyapatite nanocomposite powders. Proceedings of the International Conference Nanomaterials: Applications and Properties, vol. 1, no. 2 (2012). 02NNBM05(3 pp)

  20. 20.

    Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S.: Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med. 18, 2137–2143 (2007)

    Article  Google Scholar 

  21. 21.

    Family, R., Solati-Hashji, M., Nik, S.N., Nemati, A.: Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J Intern Med. 3(3), 460–465 (2012)

    Google Scholar 

  22. 22.

    Karacayli, U., Gunduz, O., Salman, S., Ozyegin, L.S., Agathopoulos, S., Oktar, F.N.: Effect of sintering temperature on mechanical properties and microstructure of sheep-bone derived hydroxyapatite (SHA). 13. International Conference on Biomedical Engineering IFMBE Proceedings. 23, 1271–1274 (2008)

    Article  Google Scholar 

  23. 23.

    Goller, G., Oktar, F.N.: Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Mater Lett. 56(3), 142–147 (2002)

    Article  Google Scholar 

  24. 24.

    Goller, G., Oktar, F.N.: Effects of sintering on mechanical properties of biologically derived hydroxyapatite. Key Eng Mater. 206(2), 1615–1619 (2002)

    Article  Google Scholar 

  25. 25.

    Oktar, F.N., Meydanoglu, O., Goller, G., Agathopoulos, S., Rocha, G., Ozyegin, S., Eruslu, N., Peker, I., Kayali, S.: Sintering effects on mechanical properties of hydroxyapatite-titanium dioxide (HA-TiO2) composites. Key Eng Mater. 309-311, 355–358 (2006)

    Article  Google Scholar 

  26. 26.

    Bernard-Granger, G., Guizard, C., San-Mihuel, L.: Sintering behaviour and optical properties of yttria. J Am Ceram Soc. 90(9), 2698–2702 (2007)

    Article  Google Scholar 

  27. 27.

    Oktar, F.N., Genç, Y., Göller, G., Erkmen, E.Z., Özyeğin, L.S., Toykan, D., Demirkıran, H., Haybat, H.: Sintering of synthetic hydroxyapatite compacts. Key Eng Mater. 264-268, 2087–2090 (2004)

    Article  Google Scholar 

  28. 28.

    Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J Sol-Gel Sci Technol. 2(37), 111–115 (2006)

    Article  Google Scholar 

  29. 29.

    Demirkol, N.: Production and characterization of sheep hydroxyapatite composites, PhD; Istanbul Technical University Turkey (2013)

  30. 30.

    Copcia, V.E., Luchian, C., Dunca, S., Bilba, N., Hristodor, C.M.: Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci. 46, 7121–7128 (2011)

    Article  Google Scholar 

  31. 31.

    Epure, L.M., Dimitrievska, S., Merhi, Y., Yahia, L.H.: The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation. J Biomed Mater Res, Part A. 83A(4), 1009–1023 (2007)

    Article  Google Scholar 

Download references


This study was supported by Istanbul University, Scientific Research Projects Coordination Unit, Project No: 29071.

Author information



Corresponding author

Correspondence to Cevriye Kalkandelen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalkandelen, C., Gunduz, O., Akan, A. et al. Part 1: clinoptilolite–alumina–hydroxyapatite composites for biomedical engineering. J Aust Ceram Soc 53, 91–99 (2017).

Download citation


  • Bovine hydroxyapatite
  • Clinoptilolite
  • Alumina
  • Characterization
  • Biocomposites