Journal of the Australian Ceramic Society

, Volume 53, Issue 1, pp 91–99 | Cite as

Part 1: clinoptilolite–alumina–hydroxyapatite composites for biomedical engineering

  • Cevriye KalkandelenEmail author
  • O. Gunduz
  • A. Akan
  • F. N. Oktar


The preparation and characterization of bovine hydroxyapatite (BHA) and clinoptilolite–alumina composites are studied. Clinoptilolite (Cp) and aluminium oxide (Al2O3) (at varying concentrations 5, 10 and 15 wt% ) were added to calcinated BHA powder. Green cylindrical samples were sintered at several temperatures between 1000 and 1300 °C for 4 h in air. Compression strength, Vickers microhardness and elastic modulus, as well as density, were evaluated. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) studies were also performed. The experimental results showed that varying concentrations 5, 10 and 15 wt% Cp–Al2O3 to BHA and difference in the sintering temperature between 1000 and 1300 °C increase in the microhardness (67 and 305 HV, respectively), compression strength (between 31 and 105.6 MPa, respectively) and elastic modulus (between 540 and 1275 MPa, respectively). The experimental results gained optimal parameters to be utilized in the preparation of BHA and Cp–Al2O3 composites. These natural Cp–Al2O3/BHA composites have the potential to be used in several advanced biomedical engineering applications.


Bovine hydroxyapatite Clinoptilolite Alumina Characterization Biocomposites 



This study was supported by Istanbul University, Scientific Research Projects Coordination Unit, Project No: 29071.


  1. 1.
    Bohner, M., Tadier, S., van Garderen, N., de Gasparo, A., Döbelin, N., Baroud, G.: Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter. 3, e25103 (2013). doi: 10.4161/biomatter.25103 CrossRefGoogle Scholar
  2. 2.
    Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., Oktar, F.N.: Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J Mech Behav Biomed Mater. 35, 70–76 (2014)CrossRefGoogle Scholar
  3. 3.
    Goller, G., Oktar, F.N., Ozyegin, L.S., Kayali, E.S., Demirkesen, E.: Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Mater Lett. 58(21), 2599–2604 (2004)CrossRefGoogle Scholar
  4. 4.
    Ozyegin, L.S., Oktar, F.N., Goller, G., Kayali, E.S., Yazici, T.: Plasma-sprayed bovine hydroxyapatite coatings. Mater Lett. 58(21), 2605–2609 (2004)CrossRefGoogle Scholar
  5. 5.
    Oktar, F.N., Göller, G.: Sintering effects on mechanical properties of glass-reeinforced hydroxyapatite composites. Ceram Int. 28(2), 617–621 (2002)CrossRefGoogle Scholar
  6. 6.
    Erkmen, Z.E., Genç, Y., Oktar, F.N.: The microstructural and mechanical properties of hydroxyapatite-zirconia composites. J Am Ceram Soc. 9(90), 2885–2892 (2007)CrossRefGoogle Scholar
  7. 7.
    Bogdanov, B., Georgiev, D., Angelova, K., Yaneva, K.: Natural zeolites: clinoptilolite, review. International science conference 4th -5th June 2009, Stara Zagora, Bulgaria. Economics and Society development on the Base of Knowledge. 4, 6–11 (2009)Google Scholar
  8. 8.
    Nishihara, H., Kyotani, T.: Zeolite-Templated Carbon—Its Unique Characteristics and Applications, Novel Carbon Adsorbents Chapter 10. Elsevier, Amsterdam (2012)CrossRefGoogle Scholar
  9. 9.
    Gazi, N.A., Malek, N.A.N.N., Hamdan, S.: Cytostatic activity of clinoptilolite against human cervical cancer cell lines using three different media-sterilization techniques. Adv Mater Res (Durnten-Zurich, Switz). 626, 667–671 (2013)CrossRefGoogle Scholar
  10. 10.
    Ceyhan, T., Tatlier, M., Akçakaya, H.: In vitro evaluation of the use of zeolites as biomaterials: effects on simulated body fluid and two types of cells. J Mater Sci Mater Med. 18, 1557–1562 (2007)CrossRefGoogle Scholar
  11. 11.
    Iqbal, N., Kadir, M.R.A., Mahmood, N.H.B., Yusoff, M.F.M., Siddique, J.A., Salim, N., Froemming, G.R.A., Sarian, M.N., Raghavendran, H.R.B., Kamarul, T.: Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceram Int. 40, 16091–16097 (2014)CrossRefGoogle Scholar
  12. 12.
    Schainberg, A.P.M., Ozyegin, L.S., Kursuoğlu, P., Valerio, P., Goes, A.M., Leite, M.F.: Biocompatibility evaluation of zeolite compared to bone HA, calcium phosphate (Ca2PO4) and eugenol paste. Key Eng Mater. 284-286, 561–564 (2005)CrossRefGoogle Scholar
  13. 13.
    Pavelić, K., Hadžija, M., Bedrica, L., Pavelić, J., Diki, I., Katić, M., Kralj, M., Bosnar, M.H., Kapitanović, S., Poljak-Blaži, M., Križanac, Š., Stojković, R., Jurin, M., Subotić, B., Čolić, M.: Natural zeolite clinoptilolite: new adjuvant in anticancer therapy. J Mol Med. 78, 708–720 (2001)CrossRefGoogle Scholar
  14. 14.
    Goller, G., Yazici, T., Oktar, F.N., Demirkesen, E., Kayali, E.S.: Analysis of in-vitro reaction layers formed on plasma sprayed bioglass-titanium coatings. Key Eng Mater. 264-268, 1973–1976 (2004)CrossRefGoogle Scholar
  15. 15.
    Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. ACS Biomater Sci Eng. 32, 2757–2774 (2011)Google Scholar
  16. 16.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  17. 17.
    Bi, L., Rahaman, M.N., Day, D.E., Brown, Z., Samujh, C., Liu, X., Mohammadkhah, A., Dusevich, V., Eick, J.D., Bonewald, L.F.: Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model. Acta Biomater. 9, 8015–8026 (2013)CrossRefGoogle Scholar
  18. 18.
    Valério, P., Goes, A.M., Karaçaylı, U., Gunduz, O., Salman, S., Sengil, A.Z., Yılmaz, S., Agathopoulos, S., Oktar, F.N.: Influence of Boroxide Bioactive Bioglasses (BBB) on Osteoblast Viability, Biodental Engineering. CRC Press/Balkema, Leiden (2010)Google Scholar
  19. 19.
    Ebrahimi, M., Ebadzadeh, T., Salah, E.: Effect of sintering atmosphere on phase evolution of hydroxyapatite nanocomposite powders. Proceedings of the International Conference Nanomaterials: Applications and Properties, vol. 1, no. 2 (2012). 02NNBM05(3 pp)Google Scholar
  20. 20.
    Oktar, F.N., Agathopoulos, S., Ozyegin, L.S., Gunduz, O., Demirkol, N., Bozkurt, Y., Salman, S.: Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J Mater Sci Mater Med. 18, 2137–2143 (2007)CrossRefGoogle Scholar
  21. 21.
    Family, R., Solati-Hashji, M., Nik, S.N., Nemati, A.: Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J Intern Med. 3(3), 460–465 (2012)Google Scholar
  22. 22.
    Karacayli, U., Gunduz, O., Salman, S., Ozyegin, L.S., Agathopoulos, S., Oktar, F.N.: Effect of sintering temperature on mechanical properties and microstructure of sheep-bone derived hydroxyapatite (SHA). 13. International Conference on Biomedical Engineering IFMBE Proceedings. 23, 1271–1274 (2008)CrossRefGoogle Scholar
  23. 23.
    Goller, G., Oktar, F.N.: Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Mater Lett. 56(3), 142–147 (2002)CrossRefGoogle Scholar
  24. 24.
    Goller, G., Oktar, F.N.: Effects of sintering on mechanical properties of biologically derived hydroxyapatite. Key Eng Mater. 206(2), 1615–1619 (2002)CrossRefGoogle Scholar
  25. 25.
    Oktar, F.N., Meydanoglu, O., Goller, G., Agathopoulos, S., Rocha, G., Ozyegin, S., Eruslu, N., Peker, I., Kayali, S.: Sintering effects on mechanical properties of hydroxyapatite-titanium dioxide (HA-TiO2) composites. Key Eng Mater. 309-311, 355–358 (2006)CrossRefGoogle Scholar
  26. 26.
    Bernard-Granger, G., Guizard, C., San-Mihuel, L.: Sintering behaviour and optical properties of yttria. J Am Ceram Soc. 90(9), 2698–2702 (2007)CrossRefGoogle Scholar
  27. 27.
    Oktar, F.N., Genç, Y., Göller, G., Erkmen, E.Z., Özyeğin, L.S., Toykan, D., Demirkıran, H., Haybat, H.: Sintering of synthetic hydroxyapatite compacts. Key Eng Mater. 264-268, 2087–2090 (2004)CrossRefGoogle Scholar
  28. 28.
    Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., Peker, I.: Effect of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite (BHA). J Sol-Gel Sci Technol. 2(37), 111–115 (2006)CrossRefGoogle Scholar
  29. 29.
    Demirkol, N.: Production and characterization of sheep hydroxyapatite composites, PhD; Istanbul Technical University Turkey (2013)Google Scholar
  30. 30.
    Copcia, V.E., Luchian, C., Dunca, S., Bilba, N., Hristodor, C.M.: Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci. 46, 7121–7128 (2011)CrossRefGoogle Scholar
  31. 31.
    Epure, L.M., Dimitrievska, S., Merhi, Y., Yahia, L.H.: The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation. J Biomed Mater Res, Part A. 83A(4), 1009–1023 (2007)CrossRefGoogle Scholar

Copyright information

© Australian Ceramic Society 2016

Authors and Affiliations

  • Cevriye Kalkandelen
    • 1
    • 2
    Email author
  • O. Gunduz
    • 3
    • 4
  • A. Akan
    • 1
    • 5
  • F. N. Oktar
    • 4
    • 6
  1. 1.Biomedical Engineering ProgramIstanbul UniversityIstanbulTurkey
  2. 2.Vocational School of Technical Sciences, Biomedical Devices Technology DepartmentIstanbul UniversityIstanbulTurkey
  3. 3.Department of Metallurgy and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  4. 4.Advanced Nanomaterials Research Laboratory (ANRL)Marmara UniversityIstanbulTurkey
  5. 5.Department of Electrical and Electronic EngineeringIstanbul UniversityIstanbulTurkey
  6. 6.Department of Bioengineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey

Personalised recommendations